Non Axiomatic Mathematics

Alexander Glandon

July 2025

Abstract

This work describes an example of non axiomatic mathematics. We start with an inductive proof of commutativity of addition in the spirit of Peano. Then we demonstrate a non axiomatic approach. Finally we give a related example to introduce source theory as a pedagogical tool.

1 Example

Let addition + be defined as an associative operator. Suppose we wanted to derive commutativity.

Define $m \times n$ as m repeated n times.

```
\begin{array}{c} m\times n = \\ 1+1+\ldots+1+ & (m~terms) \\ 1+1+\ldots+1+ & (m~terms) \\ \vdots \\ 1+1+\ldots+1+ & (m~terms) \\ (\text{where the above has } n~\text{rows.}) \end{array}
```

We can write the product that way because of associativity

$$(1+1)+1=(1+1)+1=1+1+1$$

Now we prove commutativity.

First we develop a lemma that says $m \times 1 = 1 \times m$

First we show $m \times 1 = m$

$$\begin{array}{rclcrcl} 1 = 1 + 1 + \ldots + 1 & = & 1 + (1 + \ldots + 1) & = & 1 + 1 \times (m - 1) \\ & = & 2 + (1 + \ldots + 1) & = & 2 + 1 \times (m - 2) \\ & = & k + (1 + \ldots + 1) & = & k + 1 \times (m - k) \\ & & \vdots & & & & \\ 1 \times m & = & 1 + & & \\ 1 + & & \vdots & & & \\ 1 & & & & & \\ \end{array}$$

Using the same argument, this equals m.

Next we show $m \times n = n \times m$ implies $(m+1) \times n = n \times (m+1)$

$$\begin{array}{lll} (m+1)\times n & = & (m+1)+(m+1)+\ldots +(m+1) \\ & = & m+m+\ldots +m+1+1+\ldots +1 \\ & = & m\times n+1\times n \\ & = & m\times n+n \\ & = & n\times m+n \\ & = & (n+n+\ldots +n)+n \\ & = & n+n+\ldots +n+n \\ & = & n\times (m+1) \end{array} \qquad \begin{array}{ll} (associativity) \\ (assoc$$

Given that $m \times 1 = 1 \times m$ and that $m \times n = n \times m$ implies $(m+1) \times n = n \times (m+1)$, induction tells us that $m \times n = n \times m$ for any m.

Again, given $1 \times n = n \times 1$ and given $m \times n = n \times m$ implies $m \times (n+1) = (n+1) \times m$, we know that $m \times n = n \times m$ for any n.

2 Non axiomatic commutativity proof

Now again, we want to show $m \times n = n \times m$.

From the definition,

```
\begin{array}{rclrcl} m \times n & = & 1+1+1+1 & (m \ terms) \\ & + & 1+1+1+1 & (m \ terms) \\ & + & 1+1+1+1 & (m \ terms) \\ & + & 1+1+1+1 & (m \ terms) \\ & + & 1+1+1+1 & (m \ terms) \end{array}
```

where there are n rows.

From the definition,

```
\begin{array}{rclrr} n \times m & = & 1+1+1+1+1 & (n \ terms) \\ & + & 1+1+1+1+1 & (n \ terms) \\ & + & 1+1+1+1+1 & (n \ terms) \\ & + & 1+1+1+1+1 & (n \ terms) \end{array}
```

where there are m rows.

Imagine you are writing the sum on a piece of paper. Notice when you rotate the paper 90 degrees, that the sum remains the same. Therefore $m \times n = n \times m$.

3 Source Theory Pedagogy Example

Source theory is a method that describes units visually as circles. (see alexglandon.com/source_theory/source_theory.pdf)

We show here an example of source theory as a visual tool to learn math.

Consider the distributive property.

 $(3\cdot 5) + (4\cdot 5)$

 $(3+4) \cdot 5$

4 References

[1] See Shilov - Linear Algebra (material on determinants in chapter 1 for inspiration on stepping outside of an axiomatic system to do a proof).