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Review the Problem

* Point Estimation
* Consider a probability distribution parameterized by 6
* X~fr(x]|6)
 We want to estimate 0
« We consider an estimate 0 is good if the loss l(@, é) Is small
* Minimize Risk = Minimize Expected Loss
« No general solution, as E[I(8, 8)] depends on 68



Review the Problem

 Prediction

Consider a data distribution with examples X, perhaps images, and Y can take values of
classesy € 1, ...,n

X, Yfo,y(xr :V)
This is a mixture model, because
We want to estimate f,,(y|x) = §(y — iy)

In other words, assuming a ground truth label exists for each image, the conditional
distribution has minimal entropy meaning it is delta function of the correct label

Our estimate is an approximate model of the conditional distribution parameterized by a
set of weights, collectively called 6

fy|x,§(y|x' 9) )
We could use KL divergence to measure the difference from f to the true distribution f

However, this would be a function of x, and we need a loss that we can compute for a
finite sample of x¢, x5, ..., X,



KL divergence and cross entropy

* KL divergence from a predicted distribution Q to a true data distribution P is

* Dy (PlIQ) = H(P,Q) — H(P)

* Ifthe cross entropy is the same, the KL divergence is higher when the true distribution has a low entropy
* Example 1:

* Pisatrue cointoss with 75% heads, 25% tails

* () is apredicted coin with 50% heads, 50% tails

 H(P,Q) =
e —P(true = heads) - log(P(pred = heads)) — P(true = tails) - log(P(pred = tails)) =

3 1\ 1 1

+ =5 log(3) = log () = 1

 H(P) =

s —P(true = heads) - log(P(true = heads)) — P(true = tails) - log(P(true = tails)) =
3 3 1 1

+ —2.10g(3) =1 log(3) = 0.811

. Dy (P||Q) =1— 0811 =0.189



KL divergence and cross entropy

* KL divergence from a predicted distribution Q to a true data distribution P is

* Dy (PlIQ) = H(P,Q) — H(P)

* Ifthe cross entropy is the same, the KL divergence is higher when the true distribution has a low entropy
* Example 2:

* Pisatrue cointoss with 50% heads, 50% tails

* () is apredicted coin with 50% heads, 50% tails

 H(P,Q) =

e —P(true = heads) - log(P(pred = heads)) — P(true = tails) - log(P(pred = tails)) =
1 1\ 1 1

+ =5 log(3) =3 log () = 1

 H(P) =

s —P(true = heads) - log(P(true = heads)) — P(true = tails) - log(P(true = tails)) =
1 1\ 1 1

+ =5 log(3) =3 log () = 1

* Dk (PlIQ)=1-1=0



KL divergence and cross entropy

* If we want to minimize KL divergence

» argming D (FIIf) = H(f, f) — H(f)

* We can minimize cross entropy

» argming Dy, (f||f) = argming H(f, f)



Cross Entropy, ML, and MAP (Bayesian)

* | will explain from point estimation perspective

* The same applies to prediction, for example my first seminar on
MAP for prediction



Point Estimation

* argming 1(9, 9) has no general solution

* S0 we make a constraint on the problem

* UMVU estimation

* Equivariance

* Maximum likelihood (meaning we lose the ability to define a loss)

* Maximum a posterior (Bayesian)



Maximum Likelihood

* | didn’t explain this for point estimation in last seminar

* As an example, take normal distribution

* We know for normal the sample mean is unbiased, and the
sample variance is biased
* Maximum likelihood of normal gives sample mean and sample

variance as estimators of mean and variance, so in the case of
maximum likelihood for variance, we can a problem with being

biased



Maximum Likelihood Large Sample Size

e If X1, X5, ..., X, arei.i.d.

. l(é‘xl-) Is the likelihood given sample i

 L(0|xy, ..., x) = Y, 1(8]x;) is the product of likelihoods for i.i.d.
samples

. TheoArem: P (L(Hlxl, ey Xpy) > L(é‘xl, ...,xn)) — 1 asn — oo for
any 0 + 0

* Meaning if the prediction is not equal to the ground truth, the
likelihood will be larger for the ground truth than for the prediction

as that sample size gets large



Maximum Likelihood Large Sample Size

* Using concept of KL divergence again

* D (fallf5) = Ellog(2 )] where X~y (x)

* Jensen’s inequality says a strictly convex function of an integral is less
than the integral of the convex function (negative log is strictly convex)

- £ [log (723)] = £ [~ 1oe (25)] > ~1oe (2 [25)

e [fa®] _ o fa0) _(® _
E[25] = 1%, S fa(odx = [T, fa(x)dx =1
. faOT _ B
log (E [fe(X) ) = —log(1) =0

* KL divergence is non-negative



Maximum Likelihood Large Sample Size

e Theorem:P (L(Hlxl, e Xp) > L(§|x1, ...,xn)) — lasn - coforany8 # 6
* Proof:

* From previous slide about KL divergence, for any 0+6

ol 5] -

* FromJensen’s inequality

+ —log (E [ﬁg ) <F|Toe (igz&?)]
-1 ()
oo (59
o8 10| <

* 0<KE

 0<-E

* E




Maximum Likelihood Large Sample Size

E[mg (igggg)

* The law of large numbers (the sample average converges to the true expectation),
using weak version

. Ik_)e’t the function of X; given by the quotient inside the sum be a random variable
elow
1 (6];) (8]X;) _
azi“g(z(m—xo “Eles\iexn )| <€) =1
* Implies

- (6]X:) _
i (2son (1) <o) <

* Analysis on next 2 slides

<0

n—>00

* Veu > 0, lim P(




Maximum Likelihood Large Sample Size

i) el g(iil§)>

. | 0)X;)
.AmP<1Zlg((6|X) — €y < E|log X

9
« If P(rain and clouds)=100%, then P(ra )100/
(8]

o) <o

¢ V60>O,hmp(
n—




Maximum Likelihood Large Sample Size

- (6)x;)
V(:'Ogglc}op ;Zilog m — €y < E

] AN
E log(l( | )> < 0Omeans3e; >0

(8]

1(01X)

i AN
E log<l( | )> +e =0

1(8]X)




Maximum Likelihood Large Sample Size

e limP

n—-oo

1 (0]x:) _
ZZilog <1(9|Xi) < ) =1
z;

log

( (

(z(e X)
)

e lim P (
n—->0o
e limP <

n—-oo

 Jim
¢ lim P(

n—0oo

I, 101%) > 11, 1(8]x;)) = 1

L(OIXy, o, X)) > L(B|Xy, o0, X)) = 1



Maximum Likelihood

* Equivalent to minimizing mean squared loss for regression
* Equivalent to minimizing cross entropy loss for classification

* May not be the best if the number of samples is low

* For example, if number of samples if low, we would not use maximum likelihood
for normal variance estimation, we would use the unbiased estimator

* May not be the best if the loss function is customized based on the

problem
* For example, consider a loss that penalizes small error more than large errors.
According to Berger decision theory text, the first million dollars is worth more
than the second million dollars, is an example of a loss function that is more

complicated



MAP estimation

* Bayesian estimation is a point estimation

* Even in maximum likelihood, we have a distribution, but we find the
mode or the max of the distribution

* I[n Bayesian, we use a prior to weight the distribution, but again we need
to select a parameter to use in prediction, so we take the mode or the

max of the posterior

* Considering a distribution is not special to Bayesian, is it just

probabilistic
* We also use distributions for UMVU, maximum likelihood, equivariance,
minimax

* Of course there are ways to use Bayesian other than point estimation
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