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Review the Problem

• Point Estimation
• Consider a probability distribution parameterized by 𝜃

• 𝑋~𝑓𝑥 𝑥 𝜃

• We want to estimate 𝜃
• We consider an estimate ෠𝜃 is good if the loss 𝑙 𝜃, ෠𝜃 is small
• Minimize Risk = Minimize Expected Loss
• No general solution, as E[𝑙(𝜃, ෠𝜃)] depends on 𝜃



Review the Problem

• Prediction
• Consider a data distribution with examples 𝑋, perhaps images, and 𝑌 can take values of 

classes 𝑦 ∈ 1, … , 𝑛

• 𝑋, 𝑌~𝑓𝑥,𝑦(𝑥, 𝑦)

• This is a mixture model, because
• We want to estimate 𝑓𝑦|𝑥 𝑦|𝑥 = 𝛿(𝑦 − 𝑖𝑥)

• In other words, assuming a ground truth label exists for each image, the conditional 
distribution has minimal entropy meaning it is delta function of the correct label 

• Our estimate is an approximate model of the conditional distribution parameterized by a 
set of weights, collectively called 𝜃

• መ𝑓𝑦|𝑥,෡𝜃 𝑦|𝑥, መ𝜃

• We could use KL divergence to measure the difference from መ𝑓 to the true distribution 𝑓
• However, this would be a function of 𝑥, and we need a loss that we can compute for a 

finite sample of 𝑥1, 𝑥2, … , 𝑥𝑚



KL divergence and cross entropy
• KL divergence from a predicted distribution Q to a true data distribution P is

• 𝐷𝐾𝐿(𝑃||𝑄) = 𝐻 𝑃, 𝑄 − 𝐻(𝑃)

• If the cross entropy is the same, the KL divergence is higher when the true distribution has a low entropy
• Example 1:
• 𝑃 is a true coin toss with 75% heads, 25% tails
• 𝑄 is a predicted coin with 50% heads, 50% tails

• 𝐻 𝑃, 𝑄 =

• −𝑃 𝑡𝑟𝑢𝑒 = ℎ𝑒𝑎𝑑𝑠 ⋅ log 𝑃 𝑝𝑟𝑒𝑑 = ℎ𝑒𝑎𝑑𝑠 − 𝑃 𝑡𝑟𝑢𝑒 = 𝑡𝑎𝑖𝑙𝑠 ⋅ log 𝑃 𝑝𝑟𝑒𝑑 = 𝑡𝑎𝑖𝑙𝑠 =

• −
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4
⋅ log

1

2
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⋅ log
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2
= 1

• 𝐻 𝑃 =

• −𝑃 𝑡𝑟𝑢𝑒 = ℎ𝑒𝑎𝑑𝑠 ⋅ log 𝑃 𝑡𝑟𝑢𝑒 = ℎ𝑒𝑎𝑑𝑠 − 𝑃 𝑡𝑟𝑢𝑒 = 𝑡𝑎𝑖𝑙𝑠 ⋅ log 𝑃 𝑡𝑟𝑢𝑒 = 𝑡𝑎𝑖𝑙𝑠 =
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⋅ log

3

4
−

1

4
⋅ log
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4
= 0.811

• 𝐷𝐾𝐿(𝑃||𝑄) = 1 − 0.811 = 0.189



KL divergence and cross entropy
• KL divergence from a predicted distribution Q to a true data distribution P is

• 𝐷𝐾𝐿(𝑃||𝑄) = 𝐻 𝑃, 𝑄 − 𝐻(𝑃)

• If the cross entropy is the same, the KL divergence is higher when the true distribution has a low entropy
• Example 2:
• 𝑃 is a true coin toss with 50% heads, 50% tails
• 𝑄 is a predicted coin with 50% heads, 50% tails

• 𝐻 𝑃, 𝑄 =

• −𝑃 𝑡𝑟𝑢𝑒 = ℎ𝑒𝑎𝑑𝑠 ⋅ log 𝑃 𝑝𝑟𝑒𝑑 = ℎ𝑒𝑎𝑑𝑠 − 𝑃 𝑡𝑟𝑢𝑒 = 𝑡𝑎𝑖𝑙𝑠 ⋅ log 𝑃 𝑝𝑟𝑒𝑑 = 𝑡𝑎𝑖𝑙𝑠 =

• −
1
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• 𝐻 𝑃 =

• −𝑃 𝑡𝑟𝑢𝑒 = ℎ𝑒𝑎𝑑𝑠 ⋅ log 𝑃 𝑡𝑟𝑢𝑒 = ℎ𝑒𝑎𝑑𝑠 − 𝑃 𝑡𝑟𝑢𝑒 = 𝑡𝑎𝑖𝑙𝑠 ⋅ log 𝑃 𝑡𝑟𝑢𝑒 = 𝑡𝑎𝑖𝑙𝑠 =

• −
1

2
⋅ log
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= 1

• 𝐷𝐾𝐿(𝑃||𝑄) = 1 − 1 = 0



KL divergence and cross entropy

• If we want to minimize KL divergence

• 𝑎𝑟𝑔𝑚𝑖𝑛 መ𝑓 𝐷𝐾𝐿(𝑓|| መ𝑓) = 𝐻 𝑓, መ𝑓 − 𝐻(𝑓)

• We can minimize cross entropy

• 𝑎𝑟𝑔𝑚𝑖𝑛 መ𝑓 𝐷𝐾𝐿(𝑓|| መ𝑓) = 𝑎𝑟𝑔𝑚𝑖𝑛 መ𝑓 𝐻(𝑓, መ𝑓)



Cross Entropy, ML, and MAP (Bayesian)

• I will explain from point estimation perspective
• The same applies to prediction, for example my first seminar on 

MAP for prediction



Point Estimation

• 𝑎𝑟𝑔𝑚𝑖𝑛෡𝜃 𝑙 𝜃,
መ𝜃 has no general solution

• So we make a constraint on the problem
• UMVU estimation
• Equivariance
• Maximum likelihood (meaning we lose the ability to define a loss)
• Maximum a posterior (Bayesian)



Maximum Likelihood

• I didn’t explain this for point estimation in last seminar
• As an example, take normal distribution
• We know for normal the sample mean is unbiased, and the 

sample variance is biased
• Maximum likelihood of normal gives sample mean and sample 

variance as estimators of mean and variance, so in the case of 
maximum likelihood for variance, we can a problem with being 
biased



Maximum Likelihood Large Sample Size

• If 𝑋1, 𝑋2, … , 𝑋𝑛 are i.i.d.
• 𝑙 መ𝜃 𝑥𝑖 is the likelihood given sample 𝑖
• 𝐿 መ𝜃 𝑥1, … , 𝑥𝑛 = Π𝑖=1

𝑛 𝑙 መ𝜃 𝑥𝑖 is the product of likelihoods for i.i.d. 
samples

• Theorem: 𝑃 𝐿 𝜃 𝑥1, … , 𝑥𝑛 > 𝐿 መ𝜃 𝑥1, … , 𝑥𝑛 → 1 as 𝑛 → ∞ for 
any መ𝜃 ≠ 𝜃

• Meaning if the prediction is not equal to the ground truth, the 
likelihood will be larger for the ground truth than for the prediction 
as that sample size gets large



Maximum Likelihood Large Sample Size

• Using concept of KL divergence again
• 𝐷𝐾𝐿(𝑓𝜃||𝑓෡𝜃) = 𝐸[log(

𝑓𝜃 𝑋

𝑓෡𝜃 𝑋
)] where 𝑋~𝑓𝜃 𝑥

• Jensen’s inequality says a strictly convex function of an integral is less 
than the integral of the convex function (negative log is strictly convex)

• 𝐸 log
𝑓𝜃 𝑋

𝑓෡𝜃 𝑋
= 𝐸 − log

𝑓෡𝜃 𝑋

𝑓𝜃 𝑋
> −log E

𝑓෡𝜃 𝑋

𝑓𝜃 𝑋

• E
𝑓෡𝜃 𝑋

𝑓𝜃 𝑋
= ∞−׬

∞ 𝑓෡𝜃 𝑥

𝑓𝜃 𝑥
𝑓𝜃 𝑥 𝑑𝑥 = ∞−׬

∞
𝑓෡𝜃 𝑥 𝑑𝑥 = 1

• −log E
𝑓෡𝜃 𝑋

𝑓𝜃 𝑋
= −log 1 = 0

• KL divergence is non-negative



Maximum Likelihood Large Sample Size

• Theorem: 𝑃 𝐿 𝜃 𝑥1, … , 𝑥𝑛 > 𝐿 ෠𝜃 𝑥1, … , 𝑥𝑛 → 1 as 𝑛 → ∞ for any ෠𝜃 ≠ 𝜃

• Proof:

• From previous slide about KL divergence, for any ෠𝜃 ≠ 𝜃

• − log 𝐸
𝑙 ෠𝜃 𝑋

𝑙 𝜃 𝑋
= 0

• From Jensen’s inequality

• − log 𝐸
𝑙 ෠𝜃 𝑋

𝑙 𝜃 𝑋
< E −log

𝑙 ෠𝜃 𝑋

𝑙 𝜃 𝑋

• 0 < E −log
𝑙 ෠𝜃 𝑋

𝑙 𝜃 𝑋

• 0 < −E log
𝑙 ෠𝜃 𝑋

𝑙 𝜃 𝑋

• E log
𝑙 ෠𝜃 𝑋

𝑙 𝜃 𝑋
< 0



Maximum Likelihood Large Sample Size

• E log
𝑙 ෠𝜃 𝑋

𝑙 𝜃 𝑋
< 0

• The law of large numbers (the sample average converges to the true expectation), 
using weak version

• Let the function of 𝑋𝑖 given by the quotient inside the sum be a random variable 
below

• ∀𝜖0 > 0, lim
𝑛→∞

𝑃
1

𝑛
Σ𝑖log

𝑙 ෠𝜃 𝑋𝑖
𝑙 𝜃 𝑋𝑖

− E log
𝑙 ෠𝜃 𝑋𝑖
𝑙 𝜃 𝑋𝑖

< 𝜖0 = 1

• Implies

• lim
𝑛→∞

𝑃
1

𝑛
Σ𝑖log

𝑙 ෠𝜃 𝑋𝑖
𝑙 𝜃 𝑋𝑖

< 0 = 1

• Analysis on next 2 slides



Maximum Likelihood Large Sample Size

• ∀𝜖0 > 0, lim
𝑛→∞

𝑃
1

𝑛
Σ𝑖log

𝑙 መ𝜃 𝑋𝑖
𝑙 𝜃 𝑋𝑖

− E log
𝑙 መ𝜃 𝑋𝑖
𝑙 𝜃 𝑋𝑖

< 𝜖0 = 1

• lim
𝑛→∞

𝑃
1

𝑛
Σ𝑖log

𝑙 መ𝜃 𝑋𝑖
𝑙 𝜃 𝑋𝑖

− 𝜖0 < E log
𝑙 መ𝜃 𝑋𝑖
𝑙 𝜃 𝑋𝑖

<
1

𝑛
Σ𝑖log

𝑙 መ𝜃 𝑋𝑖
𝑙 𝜃 𝑋𝑖

+ 𝜖0 = 1

• If P(rain and clouds)=100%, then P(rain)=100%

• lim
𝑛→∞

𝑃
1

𝑛
Σ𝑖log

𝑙 መ𝜃 𝑋𝑖
𝑙 𝜃 𝑋𝑖

− 𝜖0 < E log
𝑙 መ𝜃 𝑋𝑖
𝑙 𝜃 𝑋𝑖

= 1



Maximum Likelihood Large Sample Size

• ∀𝜖0 lim
𝑛→∞

𝑃
1

𝑛
Σ𝑖log

𝑙 ෠𝜃 𝑋𝑖
𝑙 𝜃 𝑋𝑖

− 𝜖0 < E log
𝑙 ෠𝜃 𝑋𝑖
𝑙 𝜃 𝑋𝑖

= 1

• E log
𝑙 ෠𝜃 𝑋

𝑙 𝜃 𝑋
< 0 means ∃𝜖1 > 0

• E log
𝑙 ෠𝜃 𝑋

𝑙 𝜃 𝑋 + 𝜖1 = 0

• ∃𝜖0 < 𝜖1 →

• lim
𝑛→∞

𝑃
1

𝑛
Σ𝑖log

𝑙 ෠𝜃 𝑋𝑖
𝑙 𝜃 𝑋𝑖

− 𝜖0 < −𝜖1 = 1

• lim
𝑛→∞

𝑃
1

𝑛
Σ𝑖log

𝑙 ෠𝜃 𝑋𝑖
𝑙 𝜃 𝑋𝑖

< −𝜖1 + 𝜖0 = 1

• lim
𝑛→∞

𝑃
1

𝑛
Σ𝑖log

𝑙 ෠𝜃 𝑋𝑖
𝑙 𝜃 𝑋𝑖

< 𝜖2 = 1 , 𝜖2 < 0

• Again, if P(rain and clouds)=100%, then P(rain)=100%

• lim
𝑛→∞

𝑃
1

𝑛
Σ𝑖log

𝑙 ෠𝜃 𝑋𝑖
𝑙 𝜃 𝑋𝑖

< 0 = 1



Maximum Likelihood Large Sample Size

• lim
𝑛→∞

𝑃
1

𝑛
Σ𝑖log

𝑙 ෠𝜃 𝑋𝑖
𝑙 𝜃 𝑋𝑖

< 0 = 1

• lim
𝑛→∞

𝑃 Σ𝑖log
𝑙 ෠𝜃 𝑋𝑖
𝑙 𝜃 𝑋𝑖

< 0 = 1

• lim
𝑛→∞

𝑃 log Π𝑖

𝑙 ෠𝜃 𝑋𝑖
𝑙 𝜃 𝑋𝑖

< 0 = 1

• lim
𝑛→∞

𝑃 Π𝑖

𝑙 ෠𝜃 𝑋𝑖
𝑙 𝜃 𝑋𝑖

< 1 = 1

• lim
𝑛→∞

𝑃
Π𝑖 𝑙 ෠𝜃 𝑋𝑖
Π𝑖 𝑙 𝜃 𝑋𝑖

< 1 = 1

• lim
𝑛→∞

𝑃 Π𝑖 𝑙 𝜃 𝑋𝑖 > Π𝑖 𝑙 ෠𝜃 𝑋𝑖 = 1

• lim
𝑛→∞

𝑃 𝐿 𝜃 𝑋1, … , 𝑋𝑚 > 𝐿 ෠𝜃 𝑋1, … , 𝑋𝑚 = 1



Maximum Likelihood

• Equivalent to minimizing mean squared loss for regression
• Equivalent to minimizing cross entropy loss for classification
• May not be the best if the number of samples is low

• For example, if number of samples if low, we would not use maximum likelihood 
for normal variance estimation, we would use the unbiased estimator

• May not be the best if the loss function is customized based on the 
problem
• For example, consider a loss that penalizes small error more than large errors. 

According to Berger decision theory text, the first million dollars is worth more 
than the second million dollars, is an example of a loss function that is more 
complicated



MAP estimation

• Bayesian estimation is a point estimation
• Even in maximum likelihood, we have a distribution, but we find the 

mode or the max of the distribution
• In Bayesian, we use a prior to weight the distribution, but again we need 

to select a parameter to use in prediction, so we take the mode or the 
max of the posterior

• Considering a distribution is not special to Bayesian, is it just 
probabilistic
• We also use distributions for UMVU, maximum likelihood, equivariance, 

minimax

• Of course there are ways to use Bayesian other than point estimation
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