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Overview

» Statistical Point Estimation [1]
e Statistical Hypothesis Testing [3]

* Classification Models
* Relationship to Point Estimation
* Relationship to Hypothesis Testing

* Classification Metrics for Example Applications

e Classification Metrics vs Loss Functions
* Imbalanced Data [4]



Notation

* Lower case variable -> sample
 Upper case variable -> random variable

. Examples we will see later

o Virgin~ f5 irain Vtrain| Xerain, 6), the output of a neural network is a random variable with
discrete support (number of possible classes) and it is defined by a conditional distribution
given the data sample x4, and neural network weights 6

* Yirain, the target of a training sample is a deterministic scalar, an observation of the random
variable Y (a marginal of our dataset)

* The idea is predictions are distributions over labels, targets are samples that identify a
deterministic label

An estimator is a function of a random variable (the generative distribution) and
therefore is also a random variable

An estimate is a function of a particular sample (which is deterministic) and
therefore is also deterministic

[1,2]



Statistical Point Estimation

* Given a generative distribution f,.(x|0) (e.g. Normal, Poisson)

* Design an estimator for 0 given the sample data

* Dsampie = (X1, X2, o, Xn)

* Dsampie (the dataset) is a set of n observations of the random variable X

* Called “point estimation” because for a given measurement Dggmpie,
0 is a deterministic function of the dataset (not a distribution with a spread)



Statistical Point Estimation

* [n the general formulation we may not be concerned with estimating 6,
we may only want to know a function of the parameter g(0) — we see
this later for neural networks

* Suppose we know the loss that is incurred given an estimate g of g is
given by (g, )

* The problem is to minimize the expected loss [(g, §) given that the
dataset D is a random vector (of random variables X4, X5, ..., Xy)

* We wish to minimize risk, meaning to find an estimator g(D) that
minimizes the risk given as E[1(g, §)]

* “As stated, this problem has no solution” [1]
 For each ground truth 8, argming E[I(0, 6(D))] has a different solution



Constraining the Point Estimation Problem

* To solve the point estimation problem of designing an estimator to minimize risk, we must
limit our problem to a constrained space of estimators [1]

* Examples include:
* UnbiasednessE[f] = 6
1

* For example, sample mean is unbiased because E E Z?zlxi] = %Z{Ll [x;] = - MUy = % TN Uy = Uy

Equivariance
« E[1(0 —x,86 —x)] = E[1(6,0)] used in location families, for example estimating mean of a normal distribution

* E[l(c8,ch)] = E[L(6,8)] used in scale families, for example estimating the variance of a normal distribution

 Assume a prior over 8 (Bayesian formulation)
*  Find the estimator § that minimize E[1(6, 8) | where 6~ f5(6) is a prior distribution of parameters

* Minimax
« Find the estimator 8 that minimizes the worst-case risk for possible parameter values 6 given our particular loss function

s infp supy E[l(@, @)]



Example of Constrained Point Estimation

* Consider drawing a ball from an urn, where there are n balls
labeled with the numbers 1,2, ..., n

* Suppose we take a ball from the urn, read the number on the ball,
and then want to estimate the number of balls n in the urn

e If k is the number on the ball we draw, then the random variable K
IS represented by a distribution parameterized by n

* K is a categorical distribution (maximum entropy)

* See previous seminar for categorical distribution as neural
network classifier

* |f we take m samples, then we have a multinomial distribution



Bayesian solution for urn size

* Consider a prior distribution of the number balls in the urn of the
form

cPIN=n)=00-p)"p,n=123,.. (0<p<1)

* This is a geometric distribution and is useful because we want a
prior where the likelihood of N=n decays as n becomes larger (in
other words we believe our urn becomes less likely as the number
of balls approaches extremely large numbers)



Bayesian solution for urn size
(see related MAP notes from previous lab seminar)

* Bayesian MAP solution
* P(N =nlk) =P(K =kln)P(N =n)/P(K = k)
* P(N =nlk) x P(K = k|n)P(N =n)

1

,
. P(K=k|n) =<£, kel2, .., n

0, otherwise
cPIN=n)=0-p)"p,n=>1
« MAP solution, find argmax,, % 1-p)"1p

* nonzerowherek <n



Bayesian solution for urn size
(see related notes from my previous lab seminar)

+ argmax, - (1-p)"'p =
* argmax, log (% (1-— p)"‘lp) =
* argmaxylog (%) + (n—1)log(1 —p) +log(p) =

« argmaxy,log (%) + (n—1)log(1 —p)
* Considerthat log (1) + (n — 1) log(1 — p) decreases as nincreases

n
* So we are looking for the smallest possible n to maximize P(N = n|k)

 The domain of n given by the prior geometric distributionisn € 1,2,3, ..., but
P(N = n|k) is only nonzero where n = Kk, therefore:

« argmaxy,log (%) +(n—1log(1—p) =k



Bayesian solution is biased

* Our estimatoris N(K) = K

(1

. P(K _ lel) :<;, kelz2 .., n

0, otherwise

- E[N| =E[K] =X¥_, k- P(K = k|N) =
Eel k 1 1 N(N+1 N+1
CE[N] = S, =S Th k= m o =2

N 2 2
Eel N+1
d E N :T

* Biased: our Bayesian estimate of the number of balls in the urn is
expected to be an underestimate. If there are 11 balls in the urn, our
estimator is expected to on average estimate that there are 6 balls.




Example Unbiased Solution

e LetN=aK +f
- WewantE[N(K)| = N
* E[N(K)]= ElaK +,8] = aE[K] + [ = “%"‘ﬁ

* For our estimator to be unbiased, leta = 2,5 = —1

» Then E|N(K)| = a%+ﬁ =N

 We have an unbiased estimator N(K) = 2K — 1

* If there are 11 balls in the urn, our estimator is expected to on average
estimate that there are 11 balls

* The tradeqff is that our estimator can overestimate for a given sample.
Bayesian N(K) = K cannot overestimate since we know N is at least K



UMVU Estimators

* Uniform Minimum Variance Unbiased Estimators

* Afamily of unbiased solutions exists [1]

« N(K)=2K-1-U(K),whereE[U(K)] =0

* Inour example, minimum variance estimator depends onn

e Goalisto minimize risk

« argminy E[l(N(K) — U(K),n)| = argminy E [((N(K) — U(K)) — n)zl -

s argminyg bias[]V(K) — U(K)] + var[]V(K) — U(K)] (see bias-variance decomposition of mean squared error loss)

s argminy Var[N(K) — U(K)] (because bias is 0)

* argminy E _(IV(K) - U(K)) —E[N(K) - U(K)]2 =

21
21

« argminy E _ N(K) — U(K)) — E[N(K)] (because E[U(K)] = 0)

* argminy E -(1’\7(1{) - U(K)) — n (because N(K) is unbiased)

> -
* argminy E[(N(K) — U(K)) (because argminy is independent of isolated n term)



UMVU Estimators

* For example n=1
* argming E[(2K — 1 — U(K))z] =
s argming Z;}zlP(K =k)2K —1-U(k))? =argminy 1 -

(1-U))

* The condition E[U(K)] = 0 means
P 1P(K=k)U(k)=1-U() =0, implies U(1)=0

* The minimum variance estimatoris 2K — 1 — U(K) = 2K -1
 If n=1, N(K) = 2K — 1 is minimum variance



UMVU Estimators

* Forexample n=2

« argminy E[(2K — 1 — U(K))Z] =

« argming YR_P(K =k)2K —1-U(k))* =

. argminU%(l — U(l))2 + % (3 — U(Z))2 =

+ The condition E[U(K)] = 0 means X7, P(K = K)U(k) = U(1) +-U(2) = 0
 Usingthe condition U(1) = —-U(2)

. argminU%(l + U(Z))2 + % (3 — U(Z))2 =

 Using derivative (1 +U(2)) —(3—-U(2))=0

« MeaningU(2) =1,U(1) = -1
e fn=2, N = 2K — 1 — U(K) is minimum variance if U(1) = =1, U(2) = 1



UMVU Estimators

* Because the minimum variance estimator depends on the ground
truth parametern

e n=1->N(K) = 2K — 1 is minimum variance
e n=2->N(K) = 2K — 1 — U(K) is minimum variance
- U(1) =1,U(2) = —1

* Therefore, no uniform minimum variance unbiased estimator
exists



Summary

* Picking a ball out of an urn with numbered balls

* Estimating the number of balls in the urn has no best solution and
we must consider tradeoffs

* Bayes is biased

* If we find any unbiased estimator, it will have high variance for
certain values of n (because no UMVU exists)



Prediction Models
-Bias and Variance

* Point Estimation bias and variance
* Makes sense for parameter estimation where loss is squared error

~~ 2
(6-9)
* Square error loss can be decomposed into bias and variance

 Prediction models bias and variance

* Good for regression problems again where squared error loss can be
decomposed into bias and variance (y — 9)*



Prediction Models
-Bias and Variance

* Overfitting and Underfitting
* If loss is squared error, a model that is overfit or underfit will have
loss with both bias and variance

data sample A

data sample B

lower complexity model higher complexity model



Prediction Models
-Bias and Variance

* Underfitting example on left
* High bias because half of the curve is wrong half of the time
* High variance because there are two modes

data sample A

data sample B

lower complexity model higher complexity model



Prediction Models
-Bias and Variance

* Overfitting example on left
* High bias because most of the curve is high error between the points
* High variance because the curve changes based on the sample

data sample A

data sample B

lower complexity model higher complexity model



Statistical Hypothesis Testing [3]

* Again, assume a generative distribution f,.(x|u) parameterized by
i (we called this 8 in point estimation)

* Again, the data is a collection of n samples

° Dsample = (X1, Xy, ---»Xn)

* The problem is to determine if a hypothesis Hy is accepted (the
null hypothesis)

* When we reject H,, we say that the alternative hypothesis H; is
accepted



Statistical Hypothesis Testing

* Supposewewanttotestnull Hy: u = yovs Hy: ut < Uy
* An example solution is as follows
* Define a significance «, for example 5%

* If the null hypothesis is true, the probability of finding a sample
mean at x decreases as we consider values smaller than u

* Find a constant (called a critical value) such that
P(X< Uo — ClHo) —

* This means, that if the null hypothesis is true, the probability of
getting a sample mean c or more to the left of yy is a



Statistical Hypothesis Testing

* P(X<pg —clHy) = a
 For Z test, the above is rewritten as P(Z < z;,:|Hy) = «, oOr

X—pu
P(O_/\/%O<Ztest Ho) =
* To perform the test, we observe a sample, and calculate the

sample mean x (or relevant test statistic z).

* If x < ug — ¢ orequivalently z < z;,+, We conclude that H is not
likely (we reject Hy)

* This is because there is only a 5% chance to find a sample
Z < Ziosr When Hy is true



Statistical Hypothesis Testing

* Suppose Hy: 4 = ugvs Hy: u = ug — 0.0000001

* Then even if our test says Hj is likely, we may also believe H; is
likely

e How do we solve this?



Statistical Hypothesis Testing

* Suppose Hy: 4 = ugvs Hy: 1 = g — 0.0000001
* We need to create a test of sufficient power
* Power is P(accepting H,|H,is true)

* To increase power, we need:
* Larger sample size
* Relatively smaller variance
* Relatively larger difference between gy and u4

* With large enough sample size,

P (accepting H,|H4is true) becomes reasonable (even in our
example of u; = g — 0.0000001)



Classification Models
-Relationship to Point Estimation

* Point Estimation has no general solution

Risk Minimization has no general solution
For each ground truth 8, argming E[1(8, 60(D))] has a different solution

* Classification Risk Minimization has no general solution

Classification can be constrained to find the minimum risk given the training data
Our loss function no longer depends on 8, but on a sample d from the distribution D~fy y(x, y|0)

We no longer minimize argming E [l (9, @(D))], but only minimize the loss for a given sample d of the
distribution of the data D, where d = Xtqin, Virain

1(8,6()) = I Vorain (), Forain (0)) =
We are modeling the conditional distribution Vtmin~fytmm Derain|Xerain, 0)

thin is a random variable, which is a vector of probabilities (a predicted probability for each label)

There is no algorithm to find the global minimum of the network parameter 6 (weights), no best solution
can be found for argming " (Yrqin(0), Yerqin(6))

Because we constrained the Risk to a given sample, a solution may exist, called a global minimum
Optimization problem complexity prohibits finding a global minimum solution



Classification Models
-Relationship to Hypothesis Testing

* Confusion Matrix interpretation for Hypothesis Testing

* a is defined as the probability of accepting H; given that H, is true
(Type | error)

* Power is defined as probability of accepting H; given that H, is
true

* B is defined as probability of accepting H, given that H, is true
(Type Il error)

* Therefore Power=1—pf

-~

HO 1—6( ﬁ



Classification Models
-Relationship to Hypothesis Testing

* Confusion Matrix interpretation for Hypothesis Testing and
Classification Models

* Confusion matrix in both paradigms represents Prediction on the
Left and Ground Truth on the Top

* Can be extended to multiple classes



Classification Metrics for Example
Applications - Sensitivity and Specificity

* Like DSP filtering

* When we design a filter, we are trying to be specific, keeping only
iInformation in frequencies that we are interested in

* If a sighal has information in abnormal regions, our filter may miss
that signal (it is not sensitive to signals that appear to be noise)

e Specificity n = n, if a signal is noise, filter it
» Sensitivity p = p, if a signal has information, detect it



Classification Metrics for Example
Applications - ROC

* |f we have a set of prediction probabilities, we can focus on specificity or sensitivity
by setting a prediction threshold

If this is DSP, to make a filter sensitive, we make the filter wider band
Sensitive means we have a low threshold for predicting positive
* p = p more often and n — p more often

PP = _PP_the sensitivity or True Positive Rate is higher
p  pp+pi

If this is DSP, to make a filter specific, we make the filter narrower band
Specific means we have a high threshold for predicting positive
p — D less often and n — p less often

n — p less often means n — 7 more often

* n - A more often means — = —— ~, the specificity or True Negative Rate is higher

n np+nn

* p = P more often means




Classification Metrics for Example
Applications - ROC

* ROC Plots a parametric curve TPR(threshold), FPR(threshold) as

threshold (the parameter) is varied between a low detection
threshold of 0 and a high detection threshold of 1

« TPR = P2 — _PP_ (sensitivity)

A\

p  pptpn
e« FPR = np _  np _ (mp+na)-(mp+ni)+np _ (np+nn)-nn
n __Qﬁ+nﬁ-_ np+nn - np+nn -
nn

1 —

=1 —TNR (1-specificity)

np+nn



Classification Metrics for Example
Applications - ROC Multiclass

* Applied Optics Paper
* Selected a single subject vs all other subjects to present TPR and FPR
#(Yprea=subject)

* TPR =
#(Ytarget=subject)
#(Vpred®*Subject)
e FPR=1— P= :
#(YVtarget#subject)

* Similar to Cumulative Match Characteristic Curve (CMC Curve)
* |In CMC, select a single subject, and find top-1,top-2,... accuracies



Classification Metrics for Example
Applications - ROC Security Application

* Security: Sensitivity is a Must

* If a subjectis a bad actor, we must detect the subject (high
sensitivity)



Classification Metrics for Example
Applications - ROC Multiclass

* These example ROC plots have the same area under curve (AUC)
* Which ROC is preferred for security or high sensitivity demand?

ROCA ROC B

1 1 |

TPR |— TPR

0 FPR 1 0 FPR 1



Classification Metrics for Example
Applications - ROC Multiclass

* ROC A:
* TPR 50%, FPR 0% -> sensitivity 50%, specificity 100%
* TPR100%, FPR 12.5% -> sensitivity 100%, specificity 87.5%
* ROC B:
* TPR 87.5%, FPR 0% -> sensitivity 87.5%, specificity 100%
* TPR100%, FPR 50% -> sensitivity 100%, specificity 50%
ROCA ROC B

1J 1

TPR TPR

0 FPR 1 0 FPR 1



Classification Metrics for Example
Applications - ROC Multiclass

* ROC A:
* TPR 50%, FPR 0% -> sensitivity 50%, specificity 100%
* TPR100%, FPR 12.5% -> sensitivity 100%, specificity 87.5%
* ROC B:
* TPR 87.5%, FPR 0% -> sensitivity 87.5%, specificity 100%
* TPR100%, FPR 50% -> sensitivity 100%, specificity 50%
* Best option is to maximize sensitivity at 100%, best specificity
there is 87.5% (ROC A) ROC A ROC B

1 ] 1
TPR TFR




Classification Metrics for Example
Applications - ROC Security Application

true positive ratio
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Classification Metrics for Example
Applications - ROC Security Application

* Single Subject
« Computational Model has 100% sensitivity at lower specificity than
OpenPose —> meaning our model is better for security

* | was incorrect about my interpretation during the previous presentation:
* If the single subject (left ROC below) looked like ROC A that would be more desirable
* Because we would have 100% sensitivity at an even higher specificity

Single Subject ROC Curves Multiple Subject ROC Curves
1




Classification Metrics for Example
Applications - ROC Security Application

* Multiple Subject

 Computational Model better for whole curve

Single Subject ROC Curves Multiple Subject ROC Curves




Classification Metrics for Example Applications
-Precision and Recall

* Precision (positive predicted value)
* p — p, predicted positive -> positive

PP _ _ PP
P pp+np

* Recall (sensitivity)
* p — P, positive -> predicted positive

PP _ _ PP
p pp+phi




Classification Metrics for Example Applications
-Sensitivity and Specificity vs Precision and Recall

* Sensitivity and Specificity measure a classifier's expected
nerformance on any sample (or more generally on any dataset)

* Precision and Recall measure a classifier’s performance on a
particular dataset




Classification Metrics for Example Applications
-Sensitivity and Specificity vs Precision and Recall

* Example: p l
* Validation Data Confusion Matrix: 5 80 20
n 20 180

* For positive examples p, the classifier is expected to give 80% correct prediction of p
(sensitivity)

For negative examples n, the classifier is expected to give 90% correct prediction of
7l (specificity)

Suppose we have a test dataset with a different balance, such as
p =100,n = 1000

Then expected sensitivity and specificity are the same (assuming a strong validation
dataset, called a standard test)

Expected precision is different for this test dataset (next slide)



Classification Metrics for Example Applications
-Sensitivity and Specificity vs Precision and Recall

* Example: }3 a
* Validation Data Confusion Matrix:
p 80 20
n 20 180

* For positive examples p, the classifier is expected to give 80% correct prediction of p (sensitivity)
* For negative examples n, the classifier is expected to give 90% correct prediction of i (specificity)
* Suppose we have a test dataset with a different balance, suchasp = 100,n = 1000

* Because the classifier gives 80% correct prediction of p, we expect pp = 80, pin = 20

* Because the classifier gives 90% correct prediction of n, we expect np = 100, nin = 900

* The expected sensitivity and specificity are independent of the test data (assuming the validation dataset is large and
representative)

* Expected precision is %ﬁ = % = 449%, which is different that the precision on the validation data

* Precisionis affected by data balance (even if validation and test are both close to balanced, differences changes the
expected precision)

* Expectedrecallis %ﬁ = % = 80%, which is the same as the recall (sensitivity) on the validation data



Classification Metrics vs Loss Functions

* Accuracy, Sensitivity, Specificity, F1, ROC - AUC are not appropriate
loss functions

* All 5 metrics are based on pp, pfi, np, n7i (the confusion matrix)
* These values reduce the prediction probabilities to binary matching

e We don’t train with these metrics for the same reason we use softmax
instead of hardmax

021 o 0Z]
S )
e hardmax(zy, ..., z;) = (8124, ..., 6;=;), | = argmax; (z;)

* hardmax is the limit of softmax as a@ — oo, (minimum entropy)

 softmax(zy, ..., 2;) = (



Classification Metrics vs Loss Functions

* |f we want to train a classifier, we need a loss that considers the
oredicted probability, not just the argmax or label prediction

* For multiclass classification we use cross entropy, which we can
derive from maximum log likelihood estimation (MLE)

* We also see cross entropy in Maximum A Posteriori estimation
(MAP) - see my last presentation



Classification Metrics vs Loss Functions
-Imbalanced Data

~ocal Loss [4]
mbalanced data

-or example, consider a problem with only a few positive ground
truth and mostly negative ground truth



Classification Metrics vs Loss Functions
-Imbalanced Data

* For example, consider a problem with only a few positive ground truth
and mostly negative ground truth

e FL = —(1 —9;)Y log(y;),¥ = 0, called Focal Loss [4]

* Ground truth y = 0 (easy class)

* o small->FL = —él vo)Y log(V,) = log(y,), full cross entropy loss for easy
class incorrect prediction

?/ olarge ->FL = —(1 — y,)Y log(yo) < log(y,), down-weighted cross entropy
oss for easy class correct prediction

* Ground truth y = 1 (hard class)

* ¥, small->FL = —(1 — 9,)" log(¥,) = log(91), full cross entropy loss for hard
E ass incorrect prediction

?/ (large ->FL = —(1 —y,)Y 10§(Y1) < log(y,), down-weighted cross entropy
oss for hard class correct prediction (which is accepted because log(y,) = 0 for
high probability y,)



Classification Metrics vs Loss Functions
-Imbalanced Data

e Balanced Focal Loss

—a;(1 —9y;)Y log(9;),y = 0 (refined Focal Loss from paper) [4]

* Symmetric Focal Loss (example of loss design)

1 14 "
- (1 - 55i=1) log(y:),y =2 0
Has a symmetric (more intuitive) interpretation
 Down-weight the cross-entropy loss for the easy examples

* Use full cross-entropy loss for the hard examples

If there are a large number of easy examples, original Focal Loss does not down-weight easy
misclassified examples, which may overwhelm the few number of hard examples

Extends nicely to multiclass without modification (not explicitly done in Focal Loss paper)

—(1 — ¢;)Y log(¥;) ,¥ = 0, this multiclass form down-weights each class based on the value
of ¢; (which can be Interpreted as the relative balance of data per class /)

For all forms original focal loss, balanced focal loss, and symmetric focal loss the y
hyperparameter retains the same interpretation as the amount of down-weighting (y needs to
be larger that 1 to down-weight, which the paper doesn’t mention)



Classification Metrics vs Loss Functions
-Imbalanced Data

e Future consideration

* Can use decision theory to find loss that fixes specificity at a
desired level and tries to maximize sensitivity



Loss vs Accuracy

* What is a better predictor of testing accuracy?
* Validation Loss or
* Validation Accuracy?

* | believe validation accuracy is a better indicator, because the goal
of a predictor is to predict which is measured by accuracy. Just
because a model is confident, doesn’t mean that it is correct. It
can also be confident and incorrect. It is hard to find a satisfying

Interpretation of prediction confidence. | couldn’t find an answer,
so | did the following analysis.



First Consideration

e For any model M° with validation loss L}, and testing accuracy A,
there exists a family of models M™* with validation loss L* + L, and
testing accuracy A = AY.



First Consideration

* Proof by construction:
* Given original model M
« M* ={M° with new softmax temperature a*}

« YM! € M*, M! has validation loss L' # Ly and testing accuracy
A AO
T = Af



First Consideration

* We proved that there are models with different validations losses
that have the same expected testing accuracy.

* This doesn’t mean that we proved expected testing accuracy is
better predicted by validation accuracy.

* See next argument



Second Consideration

* |If all predictions had the same confidence, loss is minimized
when confidence equals accuracy
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Second Consideration

* Proof in general case of M classes

 Ais accuracy, N isthe number of samples, M is the number of classes,
P* is the confidence of the predicted class which we fix for all examples
and (1 — P")/(M — 1) is the confidence of the non predicted classes

* In other words, in we know nothing else, what fixed confidence will
minimize loss?

+ loss =y XL T PO = D(=Dlog(P@ = )) =
* P(y; = jcorrect)(_l) log(P(yi = ])) + P(y; = jincorrect)(_l) log(P(S\’i = ]))
* loss = A(—1)log(P*) + (1 —A)(—1)log (1_P )

M-1
+ loss = —Alog(P") + (4 — 1) log (2£)




Second Consideration

* Proof continued

. loss-—,éllOg(P)"‘(‘4_1)10‘%(1 P)

* argminp-(—A)log(P*) + (A — 1) log (1 £ ) =

o argminp-(—A)log(P*) + (A—1)log(1 —P*)—(A—1)log(M — 1) =
* argminp-(—A)log(P*) + (A — 1) log(1 — P*)

* setting derivative to zero
« (-4)
« (-4)
- (AQ-P)=A-DP
e —A+ AP* = AP* - P*

e PF=A

-t
In (z)(1 P*)

In (Z)P* +(A-1)

=A-1

In (z)P* In (2)(1 P*)



Second Consideration

s P* = A

* Again, this doesn’t prove that expected testing accuracy is better
predicted by validation accuracy.
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