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Overview

• Statistical Point Estimation [1]
• Statistical Hypothesis Testing [3]
• Classification Models

• Relationship to Point Estimation
• Relationship to Hypothesis Testing

• Classification Metrics for Example Applications
• Classification Metrics vs Loss Functions

• Imbalanced Data [4]



Notation

• Lower case variable -> sample
• Upper case variable -> random variable
• Examples we will see later

• ෠𝑌𝑡𝑟𝑎𝑖𝑛~𝑓ො𝑦𝑡𝑟𝑎𝑖𝑛
( ො𝑦𝑡𝑟𝑎𝑖𝑛|𝑥𝑡𝑟𝑎𝑖𝑛, ෠𝜃), the output of a neural network is a random variable with 

discrete support (number of possible classes) and it is defined by a conditional distribution 
given the data sample 𝑥𝑡𝑟𝑎𝑖𝑛 and neural network weights ෠𝜃

• 𝑦𝑡𝑟𝑎𝑖𝑛, the target of a training sample is a deterministic scalar, an observation of the random 
variable 𝑌 (a marginal of our dataset)

• The idea is predictions are distributions over labels, targets are samples that identify a 
deterministic label

• An estimator is a function of a random variable (the generative distribution) and 
therefore is also a random variable

• An estimate is a function of a particular sample (which is deterministic) and 
therefore is also deterministic

• [1,2]



Statistical Point Estimation

• Given a generative distribution 𝑓𝑥(𝑥|𝜃) (e.g. Normal, Poisson)
• Design an estimator for ෠𝜃 given the sample data
• 𝐷𝑠𝑎𝑚𝑝𝑙𝑒 = 𝑋1, 𝑋2, … , 𝑋𝑛  
• 𝐷𝑠𝑎𝑚𝑝𝑙𝑒  (the dataset) is a set of n observations of the random variable X
• Called “point estimation” because for a given measurement 𝐷𝑠𝑎𝑚𝑝𝑙𝑒,                 

෠𝜃 is a deterministic function of the dataset (not a distribution with a spread)



Statistical Point Estimation

• In the general formulation we may not be concerned with estimating 𝜃, 
we may only want to know a function of the parameter 𝑔(𝜃) – we see 
this later for neural networks

• Suppose we know the loss that is incurred given an estimate ො𝑔 of 𝑔 is 
given by 𝑙(𝑔, ො𝑔)

• The problem is to minimize the expected loss 𝑙(𝑔, ො𝑔) given that the 
dataset 𝐷 is a random vector (of random variables 𝑋1, 𝑋2, … , 𝑋𝑛)

• We wish to minimize risk, meaning to find an estimator ො𝑔(𝐷) that 
minimizes the risk given as E[𝑙 𝑔, ො𝑔 ]

• “As stated, this problem has no solution” [1]
• For each ground truth 𝜃, 𝑎𝑟𝑔𝑚𝑖𝑛෡𝜃 E[𝑙(𝜃, ෠𝜃(𝐷))] has a different solution



Constraining the Point Estimation Problem

• To solve the point estimation problem of designing an estimator to minimize risk, we must 
limit our problem to a constrained space of estimators [1]

• Examples include:
• Unbiasedness E ෠𝜃 = 𝜃

• For example, sample mean is unbiased because E 1

𝑛
σ𝑖=1

𝑛 𝑥𝑖 =
1

𝑛
σ𝑖=1

𝑛 E 𝑥𝑖 =
1

𝑛
σ𝑖=1

𝑛 𝜇𝑥 =
1

𝑛
⋅ 𝑛 ⋅ 𝜇𝑥 = 𝜇𝑥

• Equivariance
• E 𝑙 𝜃 − 𝑥, ෠𝜃 − 𝑥 ] = E[𝑙(𝜃, ෠𝜃)  used in location families, for example estimating mean of a normal distribution

• E 𝑙 𝑐𝜃, 𝑐 ෠𝜃 ] = E[𝑙(𝜃, ෠𝜃)  used in scale families, for example estimating the variance of a normal distribution

• Assume a prior over 𝜃 (Bayesian formulation)
• Find the estimator ෠𝜃 that minimize E 𝑙(𝜃, ෠𝜃)  where 𝜃~𝑓𝜃 𝜃  is a prior distribution of parameters

• Minimax
• Find the estimator ෠𝜃 that minimizes the worst-case risk for possible parameter values 𝜃 given our particular loss function
• 𝑖𝑛𝑓෡𝜃 𝑠𝑢𝑝𝜃 𝐸[𝑙 𝜃, ෠𝜃 ]



Example of Constrained Point Estimation

• Consider drawing a ball from an urn, where there are 𝑛 balls 
labeled with the numbers 1,2, … , 𝑛

• Suppose we take a ball from the urn, read the number on the ball, 
and then want to estimate the number of balls 𝑛 in the urn

• If 𝑘 is the number on the ball we draw, then the random variable 𝐾 
is represented by a distribution parameterized by 𝑛

• 𝐾 is a categorical distribution (maximum entropy)
• See previous seminar for categorical distribution as neural 

network classifier
• If we take 𝑚 samples, then we have a multinomial distribution



Bayesian solution for urn size

• Consider a prior distribution of the number balls in the urn of the 
form

• 𝑃 𝑁 = 𝑛 = 1 − 𝑝 𝑛−1𝑝, n = 1,2,3, … (0 < 𝑝 ≤ 1)
• This is a geometric distribution and is useful because we want a 

prior where the likelihood of N=n decays as n becomes larger (in 
other words we believe our urn becomes less likely as the number 
of balls approaches extremely large numbers)



Bayesian solution for urn size
(see related MAP notes from previous lab seminar)
• Bayesian MAP solution
• 𝑃 𝑁 = 𝑛 𝑘 = 𝑃(𝐾 = 𝑘|𝑛)𝑃(𝑁 = 𝑛)/𝑃(𝐾 = 𝑘)

• 𝑃 𝑁 = 𝑛 𝑘 ∝ 𝑃 𝐾 = 𝑘 𝑛 𝑃 𝑁 = 𝑛

• 𝑃 𝐾 = 𝑘 𝑛 = ቐ
1

𝑛
,  𝑘 ∈ 1,2, … , 𝑛

0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• 𝑃 𝑁 = 𝑛 = 1 − 𝑝 𝑛−1𝑝, 𝑛 ≥ 1

• MAP solution, find 𝑎𝑟𝑔𝑚𝑎𝑥𝑛
1

𝑛
1 − 𝑝 𝑛−1𝑝

• nonzero where 𝑘 ≤ 𝑛



Bayesian solution for urn size
(see related notes from my previous lab seminar)
• 𝑎𝑟𝑔𝑚𝑎𝑥𝑛

1

𝑛
1 − 𝑝 𝑛−1𝑝 =

• 𝑎𝑟𝑔𝑚𝑎𝑥𝑛 log
1

𝑛
1 − 𝑝 𝑛−1𝑝 =

• 𝑎𝑟𝑔𝑚𝑎𝑥𝑛𝑙𝑜𝑔
1

𝑛
+ 𝑛 − 1 log 1 − 𝑝 + log 𝑝 =

• 𝑎𝑟𝑔𝑚𝑎𝑥𝑛𝑙𝑜𝑔
1

𝑛
+ 𝑛 − 1 log 1 − 𝑝

• Consider that 𝑙𝑜𝑔
1

𝑛
+ (𝑛 − 1) log 1 − 𝑝  decreases as n increases

• So we are looking for the smallest possible n to maximize P(𝑁 = 𝑛|𝑘)

• The domain of 𝑛 given by the prior geometric distribution is 𝑛 ∈ 1,2,3, …, but       
P(𝑁 = 𝑛|𝑘) is only nonzero where n ≥ k, therefore:

• 𝑎𝑟𝑔𝑚𝑎𝑥𝑛𝑙𝑜𝑔
1

𝑛
+ 𝑛 − 1 log 1 − 𝑝 = 𝑘



Bayesian solution is biased

• Our estimator is ෡𝑁(𝐾) = 𝐾

• 𝑃 𝐾 = 𝑘 𝑛 = ቐ
1

𝑛
,  𝑘 ∈ 1,2, … , 𝑛

0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• E ෡𝑁 = E 𝐾 = σ𝑘=1
𝑁 𝑘 ⋅ 𝑃 𝐾 = 𝑘 𝑁 =

• E ෡𝑁 =  σ𝑘=1
𝑁 𝑘

𝑁
=

1

N
σ𝑘=1

𝑁 𝑘 =
1

N

𝑁(𝑁+1)

2
=

𝑁+1

2

• E ෡𝑁 =
N+1

2

• Biased: our Bayesian estimate of the number of balls in the urn is 
expected to be an underestimate. If there are 11 balls in the urn, our 
estimator is expected to on average estimate that there are 6 balls. 



Example Unbiased Solution

• Let ෡𝑁 = 𝛼𝐾 + 𝛽

• We want E ෡𝑁(𝐾) = 𝑁

• E ෡𝑁(𝐾) = E 𝛼𝐾 + 𝛽 = 𝛼E 𝐾 + 𝛽 = 𝛼
𝑁+1

2
+ 𝛽

• For our estimator to be unbiased, let 𝛼 = 2, 𝛽 = −1

• Then E ෡𝑁(𝐾) = 𝛼
𝑁+1

2
+ 𝛽 = 𝑁

• We have an unbiased estimator ෡𝑁 𝐾 = 2𝐾 − 1
• If there are 11 balls in the urn, our estimator is expected to on average 

estimate that there are 11 balls
• The tradeoff is that our estimator can overestimate for a given sample. 

Bayesian ෡𝑁(𝐾) = 𝐾 cannot overestimate since we know N is at least K



UMVU Estimators
• Uniform Minimum Variance Unbiased Estimators

• A family of unbiased solutions exists [1]

• ෡𝑁 𝐾 = 2𝐾 − 1 − 𝑈(𝐾), where E 𝑈 𝐾 = 0

• In our example, minimum variance estimator depends on n

• Goal is to minimize risk

• 𝑎𝑟𝑔𝑚𝑖𝑛𝑈 E 𝑙 ෡𝑁 𝐾 − 𝑈 𝐾 , 𝑛 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑈 E ෡𝑁 𝐾 − 𝑈 𝐾 − 𝑛
2

=

• 𝑎𝑟𝑔𝑚𝑖𝑛𝑈 bias ෡𝑁 𝐾 − 𝑈 𝐾 + var ෡𝑁 𝐾 − 𝑈 𝐾  (see bias-variance decomposition of mean squared error loss)

• 𝑎𝑟𝑔𝑚𝑖𝑛𝑈 var ෡𝑁 𝐾 − 𝑈 𝐾  (because bias is 0)

• 𝑎𝑟𝑔𝑚𝑖𝑛𝑈 E ෡𝑁 𝐾 − 𝑈 𝐾
2

− E ෡𝑁 𝐾 − 𝑈 𝐾
2

=

• 𝑎𝑟𝑔𝑚𝑖𝑛𝑈 E ෡𝑁 𝐾 − 𝑈 𝐾
2

− E[ ෡𝑁 𝐾 ] (because E 𝑈 𝐾 = 0)

• 𝑎𝑟𝑔𝑚𝑖𝑛𝑈 E ෡𝑁 𝐾 − 𝑈 𝐾
2

− 𝑛 (because ෡𝑁 𝐾  is unbiased)

• 𝑎𝑟𝑔𝑚𝑖𝑛𝑈 E ෡𝑁 𝐾 − 𝑈 𝐾
2

 (because 𝑎𝑟𝑔𝑚𝑖𝑛𝑈  is independent of isolated 𝑛 term)



UMVU Estimators

• For example n=1

• 𝑎𝑟𝑔𝑚𝑖𝑛𝑈 E[ 2𝐾 − 1 − 𝑈 𝐾
2

] =

• 𝑎𝑟𝑔𝑚𝑖𝑛𝑈 σ𝑘=1
𝑛 𝑃 𝐾 = 𝑘 2𝐾 − 1 − 𝑈(𝑘) 2  = 𝑎𝑟𝑔𝑚𝑖𝑛𝑈 1 ⋅

1 − 𝑈 1
2

• The condition E 𝑈 𝐾 = 0 means                                            
σ𝑘=1

𝑛 𝑃 𝐾 = 𝑘 𝑈 𝑘 = 1 ⋅ 𝑈 1 = 0, implies U(1)=0
• The minimum variance estimator is 2𝐾 − 1 − U K = 2K − 1

• If n=1, ෡𝑁 𝐾 = 2𝐾 − 1 is minimum variance



UMVU Estimators

• For example n=2

• 𝑎𝑟𝑔𝑚𝑖𝑛𝑈  E[ 2𝐾 − 1 − 𝑈 𝐾
2

] =

• 𝑎𝑟𝑔𝑚𝑖𝑛𝑈 σ𝑘=1
𝑛 𝑃 𝐾 = 𝑘 2𝐾 − 1 − 𝑈(𝑘) 2  =

• 𝑎𝑟𝑔𝑚𝑖𝑛𝑈
1

2
1 − 𝑈 1

2
+

1

2
3 − 𝑈 2

2
=

• The condition E 𝑈 𝐾 = 0 means σ𝑘=1
𝑛 𝑃 𝐾 = 𝑘 𝑈 𝑘 =

1

2
𝑈 1 +

1

2
𝑈 2 = 0

• Using the condition 𝑈 1 = −𝑈 2

• 𝑎𝑟𝑔𝑚𝑖𝑛𝑈
1

2
1 + 𝑈 2

2
+

1

2
3 − 𝑈 2

2
=

• Using derivative (1 + U 2 ) − (3 − 𝑈 2 ) = 0

• Meaning 𝑈 2 = 1, 𝑈 1 = −1

• If n=2, ෡𝑁 = 2𝐾 − 1 − 𝑈(𝐾) is minimum variance if 𝑈 1 = −1, 𝑈 2 = 1



UMVU Estimators

• Because the minimum variance estimator depends on the ground 
truth parameter n

• n=1 -> ෡𝑁 𝐾 = 2𝐾 − 1 is minimum variance
• n=2 -> ෡𝑁 𝐾 = 2𝐾 − 1 − 𝑈(𝐾) is minimum variance

• 𝑈 1 = 1, 𝑈 2 = −1

• Therefore, no uniform minimum variance unbiased estimator 
exists



Summary

• Picking a ball out of an urn with numbered balls
• Estimating the number of balls in the urn has no best solution and 

we must consider tradeoffs
• Bayes is biased
• If we find any unbiased estimator, it will have high variance for 

certain values of n (because no UMVU exists)



Prediction Models
-Bias and Variance
• Point Estimation bias and variance

• Makes sense for parameter estimation where loss is squared error 
𝜃 − ෠𝜃

2

• Square error loss can be decomposed into bias and variance

• Prediction models bias and variance
• Good for regression problems again where squared error loss can be 

decomposed into bias and variance 𝑦 − ො𝑦 2



Prediction Models
-Bias and Variance
• Overfitting and Underfitting
• If loss is squared error, a model that is overfit or underfit will have 

loss with both bias and variance



Prediction Models
-Bias and Variance
• Underfitting example on left

• High bias because half of the curve is wrong half of the time
• High variance because there are two modes



Prediction Models
-Bias and Variance
• Overfitting example on left

• High bias because most of the curve is high error between the points
• High variance because the curve changes based on the sample



Statistical Hypothesis Testing [3]

• Again, assume a generative distribution 𝑓𝑥(𝑥|𝜇) parameterized by 
𝜇 (we called this 𝜃 in point estimation)

• Again, the data is a collection of n samples
• 𝐷𝑠𝑎𝑚𝑝𝑙𝑒 = 𝑋1, 𝑋2, … , 𝑋𝑛

• The problem is to determine if a hypothesis 𝐻0 is accepted (the 
null hypothesis)

• When we reject 𝐻0, we say that the alternative hypothesis 𝐻1 is 
accepted



Statistical Hypothesis Testing

• Suppose we want to test null 𝐻0: 𝜇 = 𝜇0 vs 𝐻1: 𝜇 < 𝜇0

• An example solution is as follows
• Define a significance 𝛼, for example 5%
• If the null hypothesis is true, the probability of finding a sample 

mean at ҧ𝑥 decreases as we consider values smaller than 𝜇
• Find a constant (called a critical value) such that                             

P( ത𝑋< 𝜇0 − 𝑐 𝐻0 = 𝛼

• This means, that if the null hypothesis is true, the probability of 
getting a sample mean c or more to the left of 𝜇0 is 𝛼



Statistical Hypothesis Testing

• P( ത𝑋< 𝜇0 − 𝑐 𝐻0 = 𝛼

• For Z test, the above is rewritten as 𝑃 𝑍 < 𝑧𝑡𝑒𝑠𝑡 𝐻0 = 𝛼, or 
𝑃

ത𝑋−𝜇0

Τ𝜎 𝑛
< 𝑧𝑡𝑒𝑠𝑡 𝐻0 = 𝛼

• To perform the test, we observe a sample, and calculate the 
sample mean ҧ𝑥 (or relevant test statistic 𝑧).

• If ҧ𝑥 < 𝜇0 − 𝑐  or equivalently 𝑧 < 𝑧𝑡𝑒𝑠𝑡, we conclude that 𝐻0 is not 
likely (we reject 𝐻0)

• This is because there is only a 5% chance to find a sample           
z < 𝑧𝑡𝑒𝑠𝑡  when 𝐻0 is true



Statistical Hypothesis Testing

• Suppose 𝐻0: 𝜇 = 𝜇0 vs 𝐻1: 𝜇 = 𝜇0 − 0.0000001

• Then even if our test says 𝐻0 is likely, we may also believe 𝐻1 is 
likely

• How do we solve this?



Statistical Hypothesis Testing

• Suppose 𝐻0: 𝜇 = 𝜇0 vs 𝐻1: 𝜇1 = 𝜇0 − 0.0000001

• We need to create a test of sufficient power
• Power is 𝑃(accepting 𝐻1|𝐻1is true)

• To increase power, we need:
• Larger sample size
• Relatively smaller variance
• Relatively larger difference between 𝜇0 and 𝜇1

• With large enough sample size,                    
𝑃(accepting 𝐻1|𝐻1is true) becomes reasonable (even in our 
example of 𝜇1 = 𝜇0 − 0.0000001)



Classification Models
-Relationship to Point Estimation
• Point Estimation has no general solution

• Risk Minimization has no general solution
• For each ground truth 𝜃, 𝑎𝑟𝑔𝑚𝑖𝑛෡𝜃 E[𝑙(𝜃, ෠𝜃(𝐷))] has a different solution

• Classification Risk Minimization has no general solution
• Classification can be constrained to find the minimum risk given the training data
• Our loss function no longer depends on 𝜃, but on a sample 𝑑 from the distribution 𝐷~𝑓𝑋,𝑌(𝑥, 𝑦|𝜃)

• We no longer minimize 𝑎𝑟𝑔𝑚𝑖𝑛෡𝜃 E 𝑙 𝜃, ෠𝜃 𝐷 , but only minimize the loss for a given sample 𝑑 of the 
distribution of the data D, where 𝑑 = 𝑥𝑡𝑟𝑎𝑖𝑛, 𝑦𝑡𝑟𝑎𝑖𝑛

• 𝑙 𝜃, ෠𝜃 𝑑 = 𝑙∗(𝑌𝑡𝑟𝑎𝑖𝑛 𝜃 , ෠𝑌𝑡𝑟𝑎𝑖𝑛( ෠𝜃)) =

• We are modeling the conditional distribution ෠𝑌𝑡𝑟𝑎𝑖𝑛~𝑓ො𝑦𝑡𝑟𝑎𝑖𝑛
( ො𝑦𝑡𝑟𝑎𝑖𝑛|𝑥𝑡𝑟𝑎𝑖𝑛, ෠𝜃)

• ෠𝑌𝑡𝑟𝑎𝑖𝑛  is a random variable, which is a vector of probabilities (a predicted probability for each label)
• There is no algorithm to find the global minimum of the network parameter ෠𝜃 (weights), no best solution 

can be found for 𝑎𝑟𝑔𝑚𝑖𝑛෡𝜃 𝑙∗(𝑌𝑡𝑟𝑎𝑖𝑛 𝜃 , ෠𝑌𝑡𝑟𝑎𝑖𝑛( ෠𝜃))
• Because we constrained the Risk to a given sample, a solution may exist, called a global minimum
• Optimization problem complexity prohibits finding a global minimum solution



Classification Models
-Relationship to Hypothesis Testing
• Confusion Matrix interpretation for Hypothesis Testing
• 𝛼 is defined as the probability of accepting 𝐻1 given that 𝐻0 is true  

(Type I error)
• Power is defined as probability of accepting 𝐻1 given that 𝐻1 is 

true
• 𝛽 is defined as probability of accepting 𝐻0 given that 𝐻1 is true         

(Type II error)
• Therefore Power = 1 − 𝛽

𝐻0 𝐻1

෡𝐻0 1 − 𝛼 𝛽

෡𝐻1 𝛼 1 − 𝛽



Classification Models
-Relationship to Hypothesis Testing
• Confusion Matrix interpretation for Hypothesis Testing and 

Classification Models
• Confusion matrix in both paradigms represents Prediction on the 

Left and Ground Truth on the Top
• Can be extended to multiple classes

𝑝 𝑛

Ƹ𝑝 𝑝 Ƹ𝑝 𝑝 ො𝑛

ො𝑛 𝑝 ො𝑛 𝑛 ො𝑛

𝐻0 𝐻1

෡𝐻0 1 − 𝛼 𝛽

෡𝐻1 𝛼 1 − 𝛽



Classification Metrics for Example 
Applications - Sensitivity and Specificity
• Like DSP filtering
• When we design a filter, we are trying to be specific, keeping only 

information in frequencies that we are interested in
• If a signal has information in abnormal regions, our filter may miss 

that signal (it is not sensitive to signals that appear to be noise)
• Specificity n → ො𝑛, if a signal is noise, filter it
• Sensitivity 𝑝 → Ƹ𝑝, if a signal has information, detect it



Classification Metrics for Example 
Applications - ROC
• If we have a set of prediction probabilities, we can focus on specificity or sensitivity 

by setting a prediction threshold
• If this is DSP, to make a filter sensitive, we make the filter wider band
• Sensitive means we have a low threshold for predicting positive
• 𝑝 → Ƹ𝑝 more often and 𝑛 → Ƹ𝑝 more often
• 𝑝 → Ƹ𝑝 more often means 𝑝 ො𝑝

𝑝
=

𝑝 ො𝑝

𝑝 ො𝑝+𝑝 ො𝑛
, the sensitivity or True Positive Rate is higher

• If this is DSP, to make a filter specific, we make the filter narrower band
• Specific means we have a high threshold for predicting positive
• 𝑝 → Ƹ𝑝 less often and 𝑛 → Ƹ𝑝 less often
• 𝑛 → Ƹ𝑝 less often means 𝑛 → ො𝑛 more often
• 𝑛 → ො𝑛 more often means  𝑛 ො𝑛

𝑛
=

𝑛 ො𝑛

𝑛 ො𝑝+𝑛 ො𝑛
, the specificity or True Negative Rate is higher



Classification Metrics for Example 
Applications - ROC
• ROC Plots a parametric curve TPR(threshold), FPR(threshold) as 

threshold (the parameter) is varied between a low detection 
threshold of 0 and a high detection threshold of 1

• 𝑇𝑃𝑅 =
𝑝 ො𝑝

𝑝
=

𝑝 ො𝑝

𝑝 ො𝑝+𝑝 ො𝑛
  (sensitivity)

• 𝐹𝑃𝑅 =
𝑛 ො𝑝

𝑛
=

𝑛 ො𝑝

𝑛 ො𝑝+𝑛 ො𝑛
=

(𝑛 ො𝑝+𝑛 ො𝑛)− 𝑛 ො𝑝+𝑛 ො𝑛 +𝑛 ො𝑝

𝑛 ො𝑝+𝑛 ො𝑛
=

(𝑛 ො𝑝+𝑛 ො𝑛)−𝑛 ො𝑛

𝑛 ො𝑝+𝑛 ො𝑛
 =

 1 −
𝑛 ො𝑛

𝑛 ො𝑝+𝑛 ො𝑛
= 1 − 𝑇𝑁𝑅  (1-specificity)



Classification Metrics for Example 
Applications - ROC Multiclass
• Applied Optics Paper

• Selected a single subject vs all other subjects to present TPR and FPR

• 𝑇𝑃𝑅 =
#(𝑦𝑝𝑟𝑒𝑑=𝑠𝑢𝑏𝑗𝑒𝑐𝑡)

#(𝑦𝑡𝑎𝑟𝑔𝑒𝑡=𝑠𝑢𝑏𝑗𝑒𝑐𝑡)

• 𝐹𝑃𝑅 = 1 −
#(𝑦𝑝𝑟𝑒𝑑≠𝑠𝑢𝑏𝑗𝑒𝑐𝑡)

#(𝑦𝑡𝑎𝑟𝑔𝑒𝑡≠𝑠𝑢𝑏𝑗𝑒𝑐𝑡)

• Similar to Cumulative Match Characteristic Curve (CMC Curve)
• In CMC, select a single subject, and find top-1,top-2,… accuracies



Classification Metrics for Example 
Applications - ROC Security Application
• Security: Sensitivity is a Must
• If a subject is a bad actor, we must detect the subject (high 

sensitivity)



Classification Metrics for Example 
Applications - ROC Multiclass
• These example ROC plots have the same area under curve (AUC)
• Which ROC is preferred for security or high sensitivity demand?



Classification Metrics for Example 
Applications - ROC Multiclass
• ROC A:

• TPR 50%, FPR 0% -> sensitivity 50%, specificity 100%
• TPR 100%, FPR 12.5% -> sensitivity 100%, specificity 87.5%

• ROC B:
• TPR 87.5%, FPR 0% -> sensitivity 87.5%, specificity 100%
• TPR 100%, FPR 50% -> sensitivity 100%, specificity 50%



Classification Metrics for Example 
Applications - ROC Multiclass
• ROC A:

• TPR 50%, FPR 0% -> sensitivity 50%, specificity 100%
• TPR 100%, FPR 12.5% -> sensitivity 100%, specificity 87.5%

• ROC B:
• TPR 87.5%, FPR 0% -> sensitivity 87.5%, specificity 100%
• TPR 100%, FPR 50% -> sensitivity 100%, specificity 50%

• Best option is to maximize sensitivity at 100%, best specificity 
there is 87.5% (ROC A)



Classification Metrics for Example 
Applications - ROC Security Application



Classification Metrics for Example 
Applications - ROC Security Application
• Single Subject

• Computational Model has 100% sensitivity at lower specificity than 
OpenPose –> meaning our model is better for security

• I was incorrect about my interpretation during the previous presentation:
• If the single subject (left ROC below) looked like ROC A that would be more desirable
• Because we would have 100% sensitivity at an even higher specificity



Classification Metrics for Example 
Applications - ROC Security Application
• Multiple Subject

• Computational Model better for whole curve



Classification Metrics for Example Applications
-Precision and Recall
• Precision (positive predicted value)
• Ƹ𝑝 → 𝑝,  predicted positive -> positive

•
𝑝 ො𝑝

ො𝑝
=

𝑝 ො𝑝

𝑝 ො𝑝+𝑛 ො𝑝

• Recall (sensitivity)
• 𝑝 → Ƹ𝑝, positive -> predicted positive

•
𝑝 ො𝑝

𝑝
=

𝑝 ො𝑝

𝑝 ො𝑝+𝑝 ො𝑛



Classification Metrics for Example Applications
-Sensitivity and Specificity vs Precision and Recall
• Sensitivity and Specificity measure a classifier's expected 

performance on any sample (or more generally on any dataset)
• Precision and Recall measure a classifier’s performance on a 

particular dataset



Classification Metrics for Example Applications
-Sensitivity and Specificity vs Precision and Recall
• Example:
• Validation Data Confusion Matrix:

• For positive examples 𝑝, the classifier is expected to give 80% correct prediction of Ƹ𝑝 
(sensitivity)

• For negative examples 𝑛, the classifier is expected to give 90% correct prediction of 
ො𝑛 (specificity)

• Suppose we have a test dataset with a different balance, such as                                  
𝑝 = 100, 𝑛 = 1000

• Then expected sensitivity and specificity are the same (assuming a strong validation 
dataset, called a standard test)

• Expected precision is different for this test dataset (next slide)

Ƹ𝑝 ො𝑛

𝑝 80 20

𝑛 20 180



Classification Metrics for Example Applications
-Sensitivity and Specificity vs Precision and Recall
• Example:
• Validation Data Confusion Matrix:

• For positive examples 𝑝, the classifier is expected to give 80% correct prediction of Ƹ𝑝 (sensitivity)
• For negative examples 𝑛, the classifier is expected to give 90% correct prediction of ො𝑛 (specificity)
• Suppose we have a test dataset with a different balance, such as 𝑝 = 100, 𝑛 = 1000

• Because the classifier gives 80% correct prediction of 𝑝, we expect 𝑝 Ƹ𝑝 = 80, p ො𝑛 = 20

• Because the classifier gives 90% correct prediction of 𝑛, we expect 𝑛 Ƹ𝑝 = 100, n ො𝑛 = 900

• The expected sensitivity and specificity are independent of the test data (assuming the validation dataset is large and 
representative)

• Expected precision is 𝑝 ො𝑝

ො𝑝
=

80

180
= 44%,  which is different that the precision on the validation data

• Precision is affected by data balance (even if validation and test are both close to balanced, differences changes the 
expected precision)

• Expected recall is 𝑝 ො𝑝

𝑝
=

80

100
= 80%, which is the same as the recall (sensitivity) on the validation data

Ƹ𝑝 ො𝑛

𝑝 80 20

𝑛 20 180



Classification Metrics vs Loss Functions

• Accuracy, Sensitivity, Specificity, F1, ROC – AUC are not appropriate 
loss functions

• All 5 metrics are based on 𝑝 Ƹ𝑝, 𝑝 ො𝑛, 𝑛 Ƹ𝑝, 𝑛 ො𝑛 (the confusion matrix)
• These values reduce the prediction probabilities to binary matching
• We don’t train with these metrics for the same reason we use softmax 

instead of hardmax

• softmax z1, … , 𝑧𝐼 =
𝑒𝛼𝑧1

σ𝑖=1
𝐼 𝑒𝛼𝑧𝑖

, … ,
𝑒𝛼𝑧𝐼

σ𝑖=1
𝐼 𝑒𝛼𝑧𝑖

• hardmax 𝑧1, … , 𝑧𝐼 = 𝛿1=𝑖 , … , 𝛿𝐼=𝑖 , 𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖 (𝑧𝑖)

• hardmax is the limit of softmax as 𝛼 →  ∞, (minimum entropy)



Classification Metrics vs Loss Functions

• If we want to train a classifier, we need a loss that considers the 
predicted probability, not just the argmax or label prediction

• For multiclass classification we use cross entropy, which we can 
derive from maximum log likelihood estimation (MLE)

• We also see cross entropy in Maximum A Posteriori estimation 
(MAP) - see my last presentation



Classification Metrics vs Loss Functions
-Imbalanced Data
• Focal Loss [4]
• Imbalanced data
• For example, consider a problem with only a few positive ground 

truth and mostly negative ground truth



Classification Metrics vs Loss Functions
-Imbalanced Data
• For example, consider a problem with only a few positive ground truth 

and mostly negative ground truth
• 𝐹𝐿 = − 1 − ො𝑦𝑖

𝛾 log ො𝑦𝑖 , 𝛾 ≥ 0, called Focal Loss [4]
• Ground truth 𝑦 = 0 (easy class)

• ො𝑦0 small -> 𝐹𝐿 = − 1 − ො𝑦0
𝛾 log ො𝑦0 ≈ log ො𝑦0 , full cross entropy loss for easy 

class incorrect prediction
• ො𝑦0 large -> 𝐹𝐿 = − 1 − ො𝑦0

𝛾 log ො𝑦0 < log ො𝑦0 , down-weighted cross entropy 
loss for easy class correct prediction

• Ground truth 𝑦 = 1 (hard class)
• ො𝑦1 small -> 𝐹𝐿 = − 1 − ො𝑦1

𝛾 log ො𝑦1 ≈ log ො𝑦1 , full cross entropy loss for hard 
class incorrect prediction

• ො𝑦1 large -> 𝐹𝐿 = − 1 − ො𝑦1
𝛾 log ො𝑦1 < log ො𝑦1 , down-weighted cross entropy 

loss for hard class correct prediction (which is accepted because log ො𝑦1 ≈ 0 for 
high probability ො𝑦1)



Classification Metrics vs Loss Functions
-Imbalanced Data
• Balanced Focal Loss

• −𝑎𝑖 1 − ො𝑦𝑖
𝛾 log ො𝑦𝑖 , 𝛾 ≥ 0 (refined Focal Loss from paper) [4]

• Symmetric Focal Loss (example of loss design)
• − 1 −

1

2
𝛿𝑖=1

𝛾
log ො𝑦𝑖 , 𝛾 ≥ 0

• Has a symmetric (more intuitive) interpretation
• Down-weight the cross-entropy loss for the easy examples
• Use full cross-entropy loss for the hard examples

• If there are a large number of easy examples, original Focal Loss does not down-weight easy 
misclassified examples, which may overwhelm the few number of hard examples 

• Extends nicely to multiclass without modification (not explicitly done in Focal Loss paper)
• − 1 − 𝑐𝑖

𝛾 log ො𝑦𝑖 , 𝛾 ≥ 0, this multiclass form down-weights each class based on the value 
of 𝑐𝑖  (which can be interpreted as the relative balance of data per class i)

• For all forms original focal loss, balanced focal loss, and symmetric focal loss the 𝛾 
hyperparameter retains the same interpretation as the amount of down-weighting (𝛾 needs to 
be larger that 1 to down-weight, which the paper doesn’t mention)



Classification Metrics vs Loss Functions
-Imbalanced Data
• Future consideration
• Can use decision theory to find loss that fixes specificity at a 

desired level and tries to maximize sensitivity



Loss vs Accuracy

• What is a better predictor of testing accuracy?
• Validation Loss or
• Validation Accuracy?

• I believe validation accuracy is a better indicator, because the goal 
of a predictor is to predict which is measured by accuracy. Just 
because a model is confident, doesn’t mean that it is correct. It 
can also be confident and incorrect. It is hard to find a satisfying 
interpretation of prediction confidence. I couldn’t find an answer, 
so I did the following analysis. 



First Consideration

• For any model 𝑀0 with validation loss 𝐿𝑉
0  and testing accuracy 𝐴𝑇

0 , 
there exists a family of models 𝑀∗ with validation loss 𝐿∗ ≠ 𝐿𝑉  and 
testing accuracy 𝐴𝑇

∗ = 𝐴𝑇
0 .



First Consideration

• Proof by construction:
• Given original model 𝑀0

• 𝑀∗ = {𝑀0 with new softmax temperature 𝛼∗}

• ∀𝑀𝑖 ∈ 𝑀∗, 𝑀𝑖  has validation loss 𝐿𝑖 ≠ 𝐿𝑉  and testing accuracy 
𝐴𝑇

𝑖 = 𝐴𝑇
0



First Consideration

• We proved that there are models with different validations losses 
that have the same expected testing accuracy. 

• This doesn’t mean that we proved expected testing accuracy is 
better predicted by validation accuracy. 

• See next argument



Second Consideration

• If all predictions had the same confidence, loss is minimized 
when confidence equals accuracy





Second Consideration

• Proof in general case of M classes
• 𝐴 is accuracy, 𝑁 is the number of samples, 𝑀 is the number of classes,  

𝑃∗ is the confidence of the predicted class which we fix for all examples 
and (1 − 𝑃∗)/(𝑀 − 1) is the confidence of the non predicted classes

• In other words, in we know nothing else, what fixed confidence will 
minimize loss?

• 𝑙𝑜𝑠𝑠 =
1

𝑁
σ𝑖=1

𝑁 σ𝑗=1
𝑀 𝑃 𝑦𝑖 = 𝑗 −1 log(𝑃(ොy = j)) =

• 𝑃 𝑦𝑖 = 𝑗𝑐𝑜𝑟𝑟𝑒𝑐𝑡 −1 log 𝑃 ොy𝑖 = 𝑗 + 𝑃 𝑦𝑖 = 𝑗𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 −1 log 𝑃 ොy𝑖 = 𝑗

• 𝑙𝑜𝑠𝑠 = 𝐴 −1 log 𝑃∗ + 1 − 𝐴 −1 log
1−𝑃∗

𝑀−1

• 𝑙𝑜𝑠𝑠 = −𝐴 log 𝑃∗ + 𝐴 − 1 log
1−𝑃∗

𝑀−1



Second Consideration
• Proof continued

• 𝑙𝑜𝑠𝑠 = −𝐴 log 𝑃∗ + 𝐴 − 1 log
1−𝑃∗

𝑀−1

• 𝑎𝑟𝑔𝑚𝑖𝑛𝑃∗ −𝐴 log 𝑃∗ + 𝐴 − 1 log
1−𝑃∗

𝑀−1
=

• 𝑎𝑟𝑔𝑚𝑖𝑛𝑃∗ −𝐴 log 𝑃∗ + 𝐴 − 1 log 1 − 𝑃∗ − 𝐴 − 1 log 𝑀 − 1 =

• 𝑎𝑟𝑔𝑚𝑖𝑛𝑃∗ −𝐴 log 𝑃∗ + 𝐴 − 1 log 1 − 𝑃∗

• setting derivative to zero

• −𝐴
1

ln 2 𝑃∗ + 𝐴 − 1
−1

ln 2 (1−𝑃∗)
= 0

• −𝐴
1

ln 2 𝑃∗ = 𝐴 − 1
1

ln 2 (1−𝑃∗)

• −𝐴 1 − 𝑃∗ = 𝐴 − 1 𝑃∗

• −𝐴 + 𝐴𝑃∗ = 𝐴𝑃∗ − 𝑃∗

• 𝑃∗ = 𝐴



Second Consideration

• 𝑃∗ = 𝐴

• Again, this doesn’t prove that expected testing accuracy is better 
predicted by validation accuracy. 
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