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1 Lemma for Basis Representation Theorem

n < Bn whenever B ≥ 2

2 Proof of Lemma

n < Bn

Because 2n ≤ Bn for any B ≥ 2 then if we can prove n < 2n that is suffi-
cient.

For example consider 4 < 24,

We can show that as follows:

1 + 1 + 1 + 1︸ ︷︷ ︸
n terms

< 2 · 2 · 2 · 2︸ ︷︷ ︸
n terms

1 + 1 + 1 + 1︸ ︷︷ ︸
n terms

< 1 + 1︸ ︷︷ ︸
2

+1 + 1

︸ ︷︷ ︸
2 · 2

+1 + 1 + 1 + 1

︸ ︷︷ ︸
2 · 2 · 2

+1 + 1 + 1 + 1 + 1 + 1 + 1 + 1

︸ ︷︷ ︸
2 · 2 · 2 · 2

Because the expansion 2 · 2 · 2 · 2 above has 4 vertical levels, we know that
there at least 4 ones in the series of additions.

Therefore, 4 < 24 and in general n < Bn if B ≥ 2 by considering similar
expansions of additions of ones.
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3 Proof 2 of Lemma

n = 1 + 1 + 1 + 1︸ ︷︷ ︸
n terms

≤ 1 +B +B2 + · · ·+Bn−1

since B ≥ 2

1 +B +B2 + · · ·+Bn−1 =
∑n−1

i=0 Bi = Bn−1
B−1

Using the equation for
∑n−1

i=0 Bi from the induction lecture.

Bn−1
B−1 ≤ Bn−1

2−1 = Bn − 1

since B ≥ 2

Bn − 1 < Bn

Therefore, n < Bn

(from Andrews)

4 Proof 2 of Basis Representation Theorem

We need to show there is a unique set of numbers C1, C2, · · · , CN−2, CN−1 with
all 0 ≤ Ci < B that satisfy A = C1 ·BN +C2 ·BN−1 + · · ·+CN−2 ·B +CN−1

Given any representation A = C1 · BN + C2 · BN−1 + · · · + CN−2 · B + CN−1,
if CN−1−M is the first non zero Ci from the right, then we can rewrite A as
C1 ·BN + C2 ·BN−1 + · · ·+ CN−1−M ·BM
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This means that

A− 1 = C1 ·BN + C2 ·BN−1 + · · ·+ CN−1−M ·BM − 1 =

C1 ·BN + C2 ·BN−1 + · · ·+ (CN−1−M − 1)BM + (BM − 1) =

C1 ·BN + C2 ·BN−1 + · · ·+ (CN−1−M − 1)BM + (BM −BM−1)

+ (BM−1 −BM−2)

...

+ (B2 −B)

+ (B − 1)

= C1 ·BN + C2 ·BN−1 + · · ·+ (CN−1−M − 1)BM + (B − 1) ·BM−1

+ (B − 1) ·BM−2

...

+ (B − 1) ·B1

+ (B − 1) ·B0

Since 0 ≤ B − 1 < B, this means there exists a representation for A − 1 with
each coefficient greater than or equal to zero and less than B.

We can write the number of representations of a number K in base B as RB(K)

We showed above that for each representation of A, we can derive a new repre-
sentation of A− 1, which means RB(A− 1) ≥ RB(A)

This also means that RB(A) ≥ RB(A + 1), as we can use the same idea for
each representation of A+ 1

Then we see
RB(1) ≥ . . . ≥ RB(A− 2) ≥ RB(A− 1) ≥ RB(A) ≥
RB(A+ 1) ≥ RB(A+ 2) ≥ . . .

3



Using the lemma from the beginning of this lecture, BA > A, when B ≥ 2 we
can continue

RB(1) ≥ . . . ≥ RB(A− 2) ≥ RB(A− 1) ≥ RB(A) ≥
RB(A+ 1) ≥ RB(A+ 2) ≥ . . . ≥ RB(B

A)

It is easy to show that BA has at least one representation

So RB(B
A) ≥ 1

1 ·BA + 0 ·BA−1 + 0 ·BA−2 + · · ·+ 0 ·B1 + 0

Then we have
RB(1) ≥ . . . ≥ RB(A− 2) ≥ RB(A− 1) ≥ RB(A) ≥
RB(A+ 1) ≥ RB(A+ 2) ≥ . . . ≥ RB(B

A) ≥ 1

We also know that RB(1) = 1, since the only representation of 1 is 1, be-
cause any higher order terms Ci ·BN+1−i would make for a number larger than
1 as B ≥ 2

Then we have
1 ≥ RB(1) ≥ . . . ≥ RB(A− 2) ≥ RB(A− 1) ≥ RB(A) ≥
RB(A+ 1) ≥ RB(A+ 2) ≥ . . . ≥ RB(B

A) ≥ 1

Since 1 ≥ RB(A) and RB(A) ≥ 1, we know RB(A) = 1 which means there
is a unique representation of A in base B.

(from Andrews)
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