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1 Induction

Induction is a proof method. If we can show a proposition P(k) is true for
k =1, and we can also show that if P(k) — P(k + 1), then we know P(k) is
true for all k > 1.

A proposition can be a statement like 2n + 1 is odd for all n, or a proposi-

tion can be an equation like 3n + 3 = 3(n + 1) for all n. We will give examples
of both.

2 Example 1

First we will use induction to prove a property of an expression is true.

For example, we can show n(n? — 1)(3n + 2) is always divisible by 24 for any
n > 1, meaning that if we divide n(n? — 1)(3n + 2) by 24 then there will be no
remainder.

First, we show n(n? — 1)(3n + 2) is divisible by 24 when n = 1.
1-(12-1)-(3-1+2) =0, which when divided by 24 has remainder 0.

Next we show that if n(n? — 1)(3n + 2) is divisible by 24 when n = k then
n(n? — 1)(3n + 2) is divisible by 24 when n = k + 1.

We note that n(n? — 1)(3n + 2)j,—k4+1 — n(n® = 1)(3n + 2k =
k+D((E+12=1)Bk+1)+2) — k(k2 - 1)(3k +2) = 12k(k + 1)%.

We also note that 12k(k + 1)? is always divisible by 24.

We know this because either the factor k is even or the factor k£ + 1 is even

since given any two numbers is succession, either the first of the second is divis-
ible by two.



Therefore 12k(k + 1)? has a factor of 12 and a factor of 2, and is therefore
divisible by 24 with no remainder.

Now, if we know that n(n? — 1)(3n + 2) is divisible by 24 when n = k, then we
also know that n(n? — 1)(3n +2) when n = k+1 is equal to k(k? — 1)(3k +2) +

12k(k + 1)%

Therefore n(n? — 1)(3n + 2) when n = k + 1 when n = k + 1 can be writ-
ten as 24 - A + 24 - B for integers A and B since both terms are divisible by 24.

We know that 24 - A + 24 - B = 24(A + B), and therefore has a factor of
24.

Therefore, since n(n? — 1)(3n + 2) when n = k + 1 equals 24(A + B), we know
that n(n? — 1)(3n + 2) when n = k + 1 is divisible by 24.

Since we have now shown that n(n? — 1)(3n + 2) is divisible by 24 when n = 1
and that if n(n? —1)(3n+2) is divisible by 24 when n = k then n(n?—1)(3n+2)
is divisible by 24 when n =k + 1.

This allows us to say that n(n? — 1)(3n + 2) is always divisible by 24 for any
n > 1. This is called proof by induction.

3 Example 2

We can also use induction to proof a formula for an expression is true.
. . -1
First we find a formula for the series Y . 2.

Then we again prove the formula using induction. Induction may not often
be an easy way to find a formula, but sometimes it provides a good way to

proof a formula for a given expression.
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So >i7, ' = =1 whenever x # 1.

We can check this formula using induction.

First we show what is called the base case, that Z?;Ol 2t =1 when n = 1.

- . 0
This is true since »_,_, 2" = 2% = 1.
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Next we show that if >0 "z’ = I:__ll when n = k, then >\ 'a? =
when n =k + 1.

Call Y1) 2% as f(n).

We know f(k+1) = 0= gt = 5% i — (SR o) k= fk) + 2t

We also know f(k) = 21

x—1

+ k

Therefore f(k+1) = f(k)+a* = T=bpgh = 2f=ly eobal _ oho) | o800 gk

r—1 z—1
k

K k+1_k k+1 +1
z"—1+x -z __ =z -1 : =z —1 = i
— = £——=, which proves that f(n) -1 whenn = k+1 given

that f(n) = x;:f when n = k.

This completes our proof of the formula Z?:_Ol 2t = 9’“’;:11 using induction.

We will use this formula later in lecture 6 to find an alternate proof of n < k™
when k£ > 2.

4 Example 3

Next we will show the formulas for Y " , i and then check the formulas using
induction.

First we will use a method from Apostol’s Calculus textbook.
First we use (k — 1)* = k* — 43 + 6k — 4k + 1

Then k* — (k — 1)* = k* — (k* — 4k® + 6k2 — 4k + 1) = 4k — 6k% + 4k — 1



Now, consider the series of equations using the above form:
-0t=4-1-6-12+4-1-1

24 14 =4.23-6-2244-2—-1
3t —24=4.33-6-32+4-3-1

E*— (K —1)* = 4k — 6k% + 4k — 1

;14—(n—1)4:4n3—6n2+4n—1

If we add all of the terms on the left we get

-0+ -1+ B -2+ +(rt = (n -1 =
nt (=1t (n=DH +- 4 (=313 + (204 2 + (-1 419 + 01 =
nt—0* =

!

If we add all of the terms on the right we get
4'2?:1i3_6'2?:1i2+4'2?:1i_2?:11 =

437 =630 P4 i =

Therefore

nt=4-300 0 630 P4 i n

This shows that if we had formulas for " % and )., i that we could find

a formula for Y, %

. .. n .. noo.
Using a similar procedure, we can find a formula for )" ; ¢* in terms of )" i.



And finally, we can use the same procedure on the base case:
n2—mn—-12=n>-~mn?-2n+1)=2n-1
Therefore

12-02=2-1-1
22_12=92.2—-1
32_-922=-92.3-1

'nz—(n—l)Q:2n—1
n?—02=2->" i-n
n?=2-3" i—-n
n?4+n=2-3" i
n(n4+1)=2-3" i

—+1 n .
n(nz } = D1l
This procedure produces a polynomial on the base case, and produces a formula
for Y7 4™ in terms of Y 4™ S0 imT2 o 57 i and n™ 1. Because
the sum of polynomials of n with highest order m + 1 is a polynomial of n with
highest order m + 1 (we know the m + 1 term is not canceled out because the
only term of order m+1 is n™*1), we can use induction to say that the formula
for 1 4™ is a polynomial of order m + 1.

Because we know that ., i™ is a polynomial of order m + 1, we can solve for
the coefficients of Y ;" i"™ without needing to find -1, ™1, 3" im=2 .. S i
first.



First lets solve for >, #* using the long approach to show the benefit of a

more direct solution following.

n . n(n+1
We already showed ) " i = %

Now we use n® — (n —1)3=n3 - (n® -3n?+3n—-1)=3n2-3n+1

Therefore
12-03=3.-12-3-1+1

22 -13=3.-22-3.2+1
33 -23=3.32-3-3+1

.713—(71—1)3 =3n?-3n+1

Adding the left and right we get

n? =00 =330 ? =3 i+ ]
n*=3-3" ¢ -3->"  i+n

n? :3-2?:11'2—3% +n
2n=6-> " i =3n(n+1)+2n

28 +3n(n+1)—2n==6-> 1 i*
2n*4+3n? +3n—2n=6-> 1  i?

20 +3nt+n=06-> 1
nn+1)2n+1)=6-> " i?

n(n+1)(2n+1) _ n .9
6 =2im1

Finally now that we have Y7 i = 2 ang 37 42 =

2
can solve for 1" | i® from earlier.

n(n+1)(2n+1)
6

we



714:4'2?:1i3_6'2?:1i2+4'2?:1i_n

nt=4. Z?:l i3_6- n(n+1)6(2n+1) 4. n(n2+1) o

nt=4-3" B —nn+1)2n+1)+2nn+1)—n
nt=4-3" 3 -2n%—3n*—n+2n*+2n—n
nt=4-%" 3 —2n% —n?
nt+2n34+n?=4-3" 3
nf(n+1)?=4-30, i
n?(n+1)2 n
( 4+ L= Zi:l i
We can also notice
() = T, 8
And therefore (3" )2 =1 |3
Now that we solved for )., i® the longer way, we can use the fact that )., i*

is a polynomial of order 4 to find a shorter solution. This would be especially
helpful is we needed high order m in >, i™



We start with

i
Y
i

i
i

We also know Y1 i = ajn® + asn

3 _ 13
10 =1

B =1423=9

=1

(P =1342% 433 =36

(=13 4+23 433+ 43 = 100
(=142 435+ 4%+ 5% =225

34 a3n2 + a4n + as since we saw ear-

lier that it is a polynomial of order 4

so that

22:1 i® = ai -
2?21 P® =
2?21 % =aq
Z?:l P* =
E?:1 i° = a

-24+CL2
-34+a2
4% +ay

-44+G,2

14+a2~

<23 + ag
~33+a3
~43+a3

43 + ag

13+a3-

124+a4-14as
222 4 a4 -2+ as
-3 4+as-3+as
42 4+ a4 -4+ as

-42—1—(14'4—1—(15

This gives us a linear system of equations.

— = =

G T T

1 12
2 22
3 32
4 42
5 5

1 12
2 22
3 32
4 42
5 52

We can evaluate the ri

13 14]
23 24
3% 34
43 44
53 5%
13 14'
23 24
33 34
43 44
5% 5%

and simplify to

a5 | Zg=1 i

aq 25:1 i

asz| = Z?:l ZB

a2 Z?:l i

|01 ] 2?21 i3

ght sums

[as ] i 1

ay 1+8

asz | = 14+8+27
as 1+8+274+64
a1 | |1 +8+27+64+125



1 1 12 13 14 [as 1
1 2 22 28 2| |ay 9
1 3 32 3 3% |ag|= |36
1 4 42 43 44 |as 100
1 5 52 5 54 |y 225

When we arrange it like this, the matrix above on the left is an example of
a Vandermonde matrix.

1 1 1 17 [as 1
2 4 8 16| |aa 9
3 9 27 81| laz|= |36

4 16 64 256| |a2 100
5 25 125 625 |a1 225

—_ e e

We want to evaluate this analytically, so we get rational numbers for the coef-
ficients of the polynomial.

Using Gaussian elimination

11 1 1 17 Jas 1
01 3 7 15 a4 8 | (row 2 -row 1)

0 2 8 26 80| |ag|=|35] (row 3 - row 1)

0 3 15 63 255 |ag 99 | (row 4 - row 1)

0 4 24 124 624| |ay 224| (row 5 - row 1)

1 1 1 1 1 as 1

01 3 7 15 a4 8

0 0 2 12 50 as|= |19 | (row 3 - 2 x row 2)
0 0 6 42 210| |a2 75 | (row 4 - 3 X row 2)
10 0 12 96 564| |a1 192| (row 5 - 4 X row 2)
1 11 1 1 as 1

01 3 7 15 N 8

0 0 2 12 50 as|= [19

0 00 6 60f |ae 18| (row 4 - 3 X row 3)
0 0 0 24 264] |ay 78| (row 5 - 6 X row 3)
111 1 1] Jas 1

0 1 3 7 15| |aq 8

0 0 2 12 50| |az|= |19

0 0 0 6 60| [a 18

0 0 0 0 24| [a 6 | (row 5 -4 x row 4)



Then 24 - a; = 6,

soa; =1/4
6~a2+60-a1:18,
6-as+ 15 = 18,
6-@223,
a2:1/2

2-a3+12-a2+50-a; =19,
2. a3 +6+25/2 = 19,
4-az+12 425 = 38,
4-&3:1,

a3:1/4,

a4+3'a3+7'a2+15-a1:8,
as+3/4+7/2+15/4 =38,
4-as+3+14+15 =32,
4-a4:0,

a4:0
a5+a4+a3+a2+a1:1,
as+0+1/4+1/2+1/4=1,
a5:0

So the polynomial we were looking for was

1,4, 1,3, 1,2 __
an tagnt +gnt =

which is what we found earlier.
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2 1)2 . . .
% using induction.

Finally, we can prove Y ., i% =

The base case is 31_, % = M, 1=1

2 2 2 2
Then we need to show Ele i3 = % implies Zf:ll i3 = w

If Zf:l i3 = M’

then M8 = S8 3 4 (k4 1)3 = BEED® 4 413 =
RA2OHR | 3 4 3k% 4+ 3k + 1 =

KU42kP 4k? AR +12k%412k4+d
4 4

E*2k3 4 k2 +4k5 41262 +12k+4
- =

E*46k5+13k2+12k+4
3 =

(k2 +2k+1) (K2 +4k+4) _

. =
(k+1)2(k+2)* _
1 =

(k4+1)2((k+1)+1)2
4

which is what we set out to prove.
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