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1 Induction

Induction is a proof method. If we can show a proposition P (k) is true for
k = 1, and we can also show that if P (k) → P (k + 1), then we know P (k) is
true for all k ≥ 1.

A proposition can be a statement like 2n + 1 is odd for all n, or a proposi-
tion can be an equation like 3n+ 3 = 3(n+ 1) for all n. We will give examples
of both.

2 Example 1

First we will use induction to prove a property of an expression is true.

For example, we can show n(n2 − 1)(3n + 2) is always divisible by 24 for any
n ≥ 1, meaning that if we divide n(n2 − 1)(3n+ 2) by 24 then there will be no
remainder.

First, we show n(n2 − 1)(3n+ 2) is divisible by 24 when n = 1.

1 · (12 − 1) · (3 · 1 + 2) = 0, which when divided by 24 has remainder 0.

Next we show that if n(n2 − 1)(3n + 2) is divisible by 24 when n = k then
n(n2 − 1)(3n+ 2) is divisible by 24 when n = k + 1.

We note that n(n2 − 1)(3n+ 2)|n=k+1 − n(n2 − 1)(3n+ 2)|n=k =

(k + 1)((k + 1)2 − 1)(3(k + 1) + 2)− k(k2 − 1)(3k + 2) = 12k(k + 1)2.

We also note that 12k(k + 1)2 is always divisible by 24.

We know this because either the factor k is even or the factor k + 1 is even
since given any two numbers is succession, either the first of the second is divis-
ible by two.
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Therefore 12k(k + 1)2 has a factor of 12 and a factor of 2, and is therefore
divisible by 24 with no remainder.

Now, if we know that n(n2 − 1)(3n+ 2) is divisible by 24 when n = k, then we
also know that n(n2− 1)(3n+2) when n = k+1 is equal to k(k2− 1)(3k+2)+
12k(k + 1)2.

Therefore n(n2 − 1)(3n + 2) when n = k + 1 when n = k + 1 can be writ-
ten as 24 ·A+ 24 ·B for integers A and B since both terms are divisible by 24.

We know that 24 · A + 24 · B = 24(A + B), and therefore has a factor of
24.

Therefore, since n(n2 − 1)(3n+ 2) when n = k + 1 equals 24(A+B), we know
that n(n2 − 1)(3n+ 2) when n = k + 1 is divisible by 24.

Since we have now shown that n(n2 − 1)(3n+ 2) is divisible by 24 when n = 1
and that if n(n2−1)(3n+2) is divisible by 24 when n = k then n(n2−1)(3n+2)
is divisible by 24 when n = k + 1.

This allows us to say that n(n2 − 1)(3n + 2) is always divisible by 24 for any
n ≥ 1. This is called proof by induction.

3 Example 2

We can also use induction to proof a formula for an expression is true.
First we find a formula for the series

∑n−1
i=0 xi.

Then we again prove the formula using induction. Induction may not often
be an easy way to find a formula, but sometimes it provides a good way to
proof a formula for a given expression.

∑n−1
i=0 xi = x0 + x1 + x2 + · · ·+ xn−2 + xn−1 = c

x · (x0 + x1 + x2 + · · ·+ xn−2 + xn−1) = x · c
x1 + x2 + x3 + · · ·+ xn−1 + xn = x · c

x0 + x1 + x2 + x3 + · · ·+ xn−1 + xn = x0 + x · c
x0 + x1 + x2 + x3 + · · ·+ xn−1 = x0 − xn + x · c

c = x0 − xn + x · c
c(1− x) = x0 − xn

c = x0−xn

1−x if x ̸= 1
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c = xn−x0

x−1

c = xn−1
x−1

So
∑n−1

i=0 xi = xn−1
x−1 whenever x ̸= 1.

We can check this formula using induction.

First we show what is called the base case, that
∑n−1

i=0 xi = 1 when n = 1.

This is true since
∑0

i=0 x
i = x0 = 1.

Next we show that if
∑n−1

i=0 xi = xk−1
x−1 when n = k, then

∑n−1
i=0 xi = xk+1−1

x−1
when n = k + 1.

Call
∑n−1

i=0 xi as f(n).

We know f(k + 1) =
∑(k+1)−1

i=0 xi =
∑k

i=0 x
i = (

∑k−1
i=0 xi) + xk = f(k) + xk.

We also know f(k) = xk−1
x−1

Therefore f(k+1) = f(k)+xk = xk−1
x−1 +xk = xk−1

x−1 + (x−1)xk

x−1 = xk−1
x−1 +xk+1−xk

x−1 =
xk−1+xk+1−xk

x−1 = xk+1−1
x−1 , which proves that f(n) = xk+1−1

x−1 when n = k+1 given

that f(n) = xk−1
x−1 when n = k.

This completes our proof of the formula
∑n−1

i=0 xi = xn−1
x−1 using induction.

We will use this formula later in lecture 6 to find an alternate proof of n < kn

when k ≥ 2.

4 Example 3

Next we will show the formulas for
∑n

i=1 i
m and then check the formulas using

induction.

First we will use a method from Apostol’s Calculus textbook.

First we use (k − 1)4 = k4 − 4k3 + 6k2 − 4k + 1

Then k4 − (k − 1)4 = k4 − (k4 − 4k3 + 6k2 − 4k + 1) = 4k3 − 6k2 + 4k − 1
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Now, consider the series of equations using the above form:

14 − 04 = 4 · 13 − 6 · 12 + 4 · 1− 1
24 − 14 = 4 · 23 − 6 · 22 + 4 · 2− 1
34 − 24 = 4 · 33 − 6 · 32 + 4 · 3− 1
...
k4 − (k − 1)4 = 4k3 − 6k2 + 4k − 1
...
n4 − (n− 1)4 = 4n3 − 6n2 + 4n− 1

If we add all of the terms on the left we get

(14 − 04) + (24 − 14) + (34 − 24) + · · ·+ (n4 − (n− 1)4) =

n4 + (−(n− 1)4 + (n− 1)4) + · · ·+ (−34 +34) + (−24 +24) + (−14 +14) + 04 =

n4 − 04 =

n4

If we add all of the terms on the right we get

4 ·
∑n

i=1 i
3 − 6 ·

∑n
i=1 i

2 + 4 ·
∑n

i=1 i−
∑n

i=1 1 =

4 ·
∑n

i=1 i
3 − 6 ·

∑n
i=1 i

2 + 4 ·
∑n

i=1 i− n =

Therefore

n4 = 4 ·
∑n

i=1 i
3 − 6 ·

∑n
i=1 i

2 + 4 ·
∑n

i=1 i− n

This shows that if we had formulas for
∑n

i=1 i
2 and

∑n
i=1 i that we could find

a formula for
∑n

i=1 i
3.

Using a similar procedure, we can find a formula for
∑n

i=1 i
2 in terms of

∑n
i=1 i.
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And finally, we can use the same procedure on the base case:

n2 − (n− 1)2 = n2 − (n2 − 2n+ 1) = 2n− 1

Therefore

12 − 02 = 2 · 1− 1
22 − 12 = 2 · 2− 1
32 − 22 = 2 · 3− 1
...
n2 − (n− 1)2 = 2n− 1

n2 − 02 = 2 ·
∑n

i=1 i− n

n2 = 2 ·
∑n

i=1 i− n

n2 + n = 2 ·
∑n

i=1 i

n(n+ 1) = 2 ·
∑n

i=1 i

n(n+1)
2 =

∑n
i=1 i

This procedure produces a polynomial on the base case, and produces a formula
for

∑n
i=1 i

m in terms of
∑n

i=1 i
m−1,

∑n
i=1 i

m−2, · · · ,
∑n

i=1 i and nm+1. Because
the sum of polynomials of n with highest order m+1 is a polynomial of n with
highest order m + 1 (we know the m + 1 term is not canceled out because the
only term of order m+1 is nm+1), we can use induction to say that the formula
for

∑n
i=1 i

m is a polynomial of order m+ 1.

Because we know that
∑n

i=1 i
m is a polynomial of order m+1, we can solve for

the coefficients of
∑n

i=1 i
m without needing to find

∑n
i=1 i

m−1,
∑n

i=1 i
m−2, · · · ,

∑n
i=1 i

first.
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First lets solve for
∑n

i=1 i
3 using the long approach to show the benefit of a

more direct solution following.

We already showed
∑n

i=1 i =
n(n+1)

2 .

Now we use n3 − (n− 1)3 = n3 − (n3 − 3n2 + 3n− 1) = 3n2 − 3n+ 1

Therefore

13 − 03 = 3 · 12 − 3 · 1 + 1
23 − 13 = 3 · 22 − 3 · 2 + 1
33 − 23 = 3 · 32 − 3 · 3 + 1
...
n3 − (n− 1)3 = 3n2 − 3n+ 1

Adding the left and right we get

n3 − 03 = 3 ·
∑n

i=1 i
2 − 3 ·

∑n
i=1 i+

∑n
i=1 1

n3 = 3 ·
∑n

i=1 i
2 − 3 ·

∑n
i=1 i+ n

n3 = 3 ·
∑n

i=1 i
2 − 3n(n+1)

2 + n

2n3 = 6 ·
∑n

i=1 i
2 − 3n(n+ 1) + 2n

2n3 + 3n(n+ 1)− 2n = 6 ·
∑n

i=1 i
2

2n3 + 3n2 + 3n− 2n = 6 ·
∑n

i=1 i
2

2n3 + 3n2 + n = 6 ·
∑n

i=1 i
2

n(n+ 1)(2n+ 1) = 6 ·
∑n

i=1 i
2

n(n+1)(2n+1)
6 =

∑n
i=1 i

2

Finally now that we have
∑n

i=1 i = n(n+1)
2 and

∑n
i=1 i

2 = n(n+1)(2n+1)
6 we

can solve for
∑n

i=1 i
3 from earlier.
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n4 = 4 ·
∑n

i=1 i
3 − 6 ·

∑n
i=1 i

2 + 4 ·
∑n

i=1 i− n

n4 = 4 ·
∑n

i=1 i
3 − 6 · n(n+1)(2n+1)

6 + 4 · n(n+1)
2 − n

n4 = 4 ·
∑n

i=1 i
3 − n(n+ 1)(2n+ 1) + 2n(n+ 1)− n

n4 = 4 ·
∑n

i=1 i
3 − 2n3 − 3n2 − n+ 2n2 + 2n− n

n4 = 4 ·
∑n

i=1 i
3 − 2n3 − n2

n4 + 2n3 + n2 = 4 ·
∑n

i=1 i
3

n2(n+ 1)2 = 4 ·
∑n

i=1 i
3

n2(n+1)2

4 =
∑n

i=1 i
3

We can also notice

(n(n+1)
2 )2 =

∑n
i=1 i

3

And therefore (
∑n

i=1 i)
2 =

∑n
i=1 i

3

Now that we solved for
∑n

i=1 i
3 the longer way, we can use the fact that

∑n
i=1 i

3

is a polynomial of order 4 to find a shorter solution. This would be especially
helpful is we needed high order m in

∑n
i=1 i

m
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We start with∑1
i=1 i

3 = 13 = 1∑1
i=1 i

3 = 13 + 23 = 9∑1
i=1 i

3 = 13 + 23 + 33 = 36∑1
i=1 i

3 = 13 + 23 + 33 + 43 = 100∑1
i=1 i

3 = 13 + 23 + 33 + 43 + 53 = 225

We also know
∑n

i=1 i
3 = a1n

4 + a2n
3 + a3n

2 + a4n + a5 since we saw ear-
lier that it is a polynomial of order 4

so that∑1
i=1 i

3 = a1 · 14 + a2 · 13 + a3 · 12 + a4 · 1 + a5∑2
i=1 i

3 = a1 · 24 + a2 · 23 + a3 · 22 + a4 · 2 + a5∑3
i=1 i

3 = a1 · 34 + a2 · 33 + a3 · 32 + a4 · 3 + a5∑4
i=1 i

3 = a1 · 44 + a2 · 43 + a3 · 42 + a4 · 4 + a5∑5
i=1 i

3 = a1 · 44 + a2 · 43 + a3 · 42 + a4 · 4 + a5

This gives us a linear system of equations.
1 1 12 13 14

1 2 22 23 24

1 3 32 33 34

1 4 42 43 44

1 5 52 53 54



a5
a4
a3
a2
a1

=

∑1

i=1 i
3∑2

i=1 i
3∑3

i=1 i
3∑4

i=1 i
3∑5

i=1 i
3


We can evaluate the right sums
1 1 12 13 14

1 2 22 23 24

1 3 32 33 34

1 4 42 43 44

1 5 52 53 54



a5
a4
a3
a2
a1

=


1
1 + 8

1 + 8 + 27
1 + 8 + 27 + 64

1 + 8 + 27 + 64 + 125


and simplify to
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
1 1 12 13 14

1 2 22 23 24

1 3 32 33 34

1 4 42 43 44

1 5 52 53 54



a5
a4
a3
a2
a1

=


1
9
36
100
225


When we arrange it like this, the matrix above on the left is an example of
a Vandermonde matrix.
1 1 1 1 1
1 2 4 8 16
1 3 9 27 81
1 4 16 64 256
1 5 25 125 625



a5
a4
a3
a2
a1

=


1
9
36
100
225


We want to evaluate this analytically, so we get rational numbers for the coef-
ficients of the polynomial.

Using Gaussian elimination
1 1 1 1 1
0 1 3 7 15
0 2 8 26 80
0 3 15 63 255
0 4 24 124 624



a5
a4
a3
a2
a1

=


1
8
35
99
224


(row 2 - row 1)
(row 3 - row 1)
(row 4 - row 1)
(row 5 - row 1)

1 1 1 1 1
0 1 3 7 15
0 0 2 12 50
0 0 6 42 210
0 0 12 96 564



a5
a4
a3
a2
a1

=


1
8
19
75
192

 (row 3 - 2× row 2)
(row 4 - 3× row 2)
(row 5 - 4× row 2)

1 1 1 1 1
0 1 3 7 15
0 0 2 12 50
0 0 0 6 60
0 0 0 24 264



a5
a4
a3
a2
a1

=

1
8
19
18
78

 (row 4 - 3× row 3)
(row 5 - 6× row 3)

1 1 1 1 1
0 1 3 7 15
0 0 2 12 50
0 0 0 6 60
0 0 0 0 24



a5
a4
a3
a2
a1

=

1
8
19
18
6


(row 5 - 4× row 4)
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Then 24 · a1 = 6,
so a1 = 1/4

6 · a2 + 60 · a1 = 18,
6 · a2 + 15 = 18,
6 · a2 = 3,
a2 = 1/2

2 · a3 + 12 · a2 + 50 · a1 = 19,
2 · a3 + 6 + 25/2 = 19,
4 · a3 + 12 + 25 = 38,
4 · a3 = 1,
a3 = 1/4,

a4 + 3 · a3 + 7 · a2 + 15 · a1 = 8,
a4 + 3/4 + 7/2 + 15/4 = 8,
4 · a4 + 3 + 14 + 15 = 32,
4 · a4 = 0,
a4 = 0

a5 + a4 + a3 + a2 + a1 = 1,
a5 + 0 + 1/4 + 1/2 + 1/4 = 1,
a5 = 0

So the polynomial we were looking for was

1
4n

4 + 1
2n

3 + 1
4n

2 =

1
4 (n

4 + 2n3 + n2) =

n2(n+1)2

4

which is what we found earlier.
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Finally, we can prove
∑n

i=1 i
3 = n2(n+1)2

4 using induction.

The base case is
∑1

i=1 i
3 = 12(1+1)2

4 , 1 = 1

Then we need to show
∑k

i=1 i
3 = k2(k+1)2

4 implies
∑k+1

i=1 i3 = (k+1)2((k+1)+1)2

4

If
∑k

i=1 i
3 = k2(k+1)2

4 ,

then
∑k+1

i=1 i3 =
∑k

i=1 i
3 + (k + 1)3 = k2(k+1)2

4 + (k + 1)3 =

k4+2k3+k2

4 + k3 + 3k2 + 3k + 1 =

k4+2k3+k2

4 + 4k3+12k2+12k+4
4 =

k4+2k3+k2+4k3+12k2+12k+4
4 =

k4+6k3+13k2+12k+4
4 =

(k2+2k+1)(k2+4k+4)
4 =

(k+1)2(k+2)2

4 =

(k+1)2((k+1)+1)2

4

which is what we set out to prove.
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