

Inverse Square Wave Blind Source Separation

Alexander Glandon
aglan001@odu.edu

Abstract: This work describes a method for blind signal separation with no knowledge of the signal characteristics. We prove the zero knowledge separation using simulation that converges on random signal sources with 0 autocorrelation.

This work is the completion of an idea developed under the supervision of Khan Iftekharuddin.

Inverse square waves decay at $1/r^2$, where r is the radius from the source.

We perform a simulation on signals with no prior knowledge, proving results for a general class of signals. Blind signal separation convergence is obtained on signals with 0 autocorrelation.

The idea is given in [1], but the approach is modified from gradient descent to root finding. This update allowed us to achieve convergence in simulation, which was not done using the theory in [1].

Consider sources 1,2,...,N. The sources emit signals Q_{nt} with values at time steps 1,2,..,T. This is equally valid for samples at $t=(\text{time} \times \text{frequency})$ steps. We will use the notation Q_{nt} to refer to either case.

Consider M receivers ($M \geq 4$ for uniqueness given geometric considerations). The receivers sample signals P_{mt} at time steps 1,2,...,T.

The receiver locations are known as R_{mc} , where c is dimension index 1, 2, or 3 of our coordinate system.

The source locations are unknown as S_{nc} .

We wish to estimate Q_{nt} given the receiver locations and the receiver samples.

The distance between known receiver locations and unknown source locations is
 $D_{mn} = (\sum (R_{mc} - S_{nc})^2)^{0.5}$ [eq 1]

Given this formulation, for inverse square waves
 $P = UQ$, where $U_{mn} = D_{mn}^{-2}$

Naive matrix factorization of UQ has $m \times n + n \times t$ unknowns and $m \times t$ knowns.

Using the constraint in eq 1, we reduce the number of unknowns to $n \times 3 + n \times t$.

This allows a unique solution as we show in simulation using nonlinear least squares to find the roots of $f(S, Q) = P - U(S)Q$.

[1] Glandon, Alexander M. "Recurrent neural networks and matrix methods for cognitive radio spectrum prediction and security." (2017).

Appendix

Here is the code for inverse square wave blind source separation.

```
import matplotlib
import matplotlib.pyplot as plt
matplotlib.use('Agg')
import numpy as np
from scipy.optimize import least_squares
from sklearn.decomposition import PCA

# 8 of receivers in a cube
M = 8
R = np.zeros(shape=(M,3))
R[:,0] = [0, 0, 0, 0, 1, 1, 1, 1]
R[:,1] = [0, 0, 1, 1, 0, 0, 1, 1]
R[:,2] = [0, 1, 0, 1, 0, 1, 0, 1]
R = R

# number of sources, 10 would be a hard separation problem
N = 5

# 100 measurements over time
T = 100

# 100 ground truth source power samples
Q_target = np.square(np.random.normal(loc=0,scale=1,size=(N,T))) # maybe I don't need to
square if I'm not trying NNMF (power not needed, can use raw signal)
S_target = np.random.uniform(low=0,high=1,size=(N,3))

# 100 received power samples
D_target = np.zeros((M,N))
for m in range(M):
    for n in range(N):
        D_target[m,n] = np.power(np.sum(np.square(R[m,:]-S_target[n,:])),0.5)
```

```
P = np.matmul(np.divide(1,np.square(D_target)),Q_target)
```

```
# solution:
```

```
def f(X_guess):  
    S_vector = X_guess[0:(N*3)]  
    Q_vector = X_guess[N*3:]  
  
    S_guess = S_vector.reshape(N,3)  
    Q_guess = Q_vector.reshape(N,T)  
  
    U_guess = np.zeros((M,N))  
    for m in range(M):  
        for n in range(N):  
            U_guess[m,n] = np.power(np.sum(np.square(R[m,:]-S_guess[n,:])), -1)  
  
    error = P-np.matmul(U_guess,Q_guess)  
    error_vector = error.reshape((M*T,))  
    return error_vector
```

```
# check that f(x) == 0  
S_vector = S_target.reshape((N*3,))  
Q_vector = Q_target.reshape((N*T,))  
X_target = np.concatenate((S_vector,Q_vector))  
errors = f(X_target)  
print(0.5*np.sum(np.square(errors)))
```

```
#max_nfev = 100
```

```
X0 = np.random.normal(loc=0,scale=1,size=(N*(T+3),))  
X_guess=least_squares(fun=f,x0=X0,verbose=2)
```

```
S_vector = X_guess['x'][0:(N*3)]  
Q_vector = X_guess['x'][N*3:]  
S_guess = S_vector.reshape(N,3)  
Q_guess = Q_vector.reshape(N,T)
```

```
# check that f(x) == 0
```

```

S_guess_vector = S_guess.reshape((N*3,))
Q_guess_vector = Q_guess.reshape((N*T,))
X_guess = np.concatenate((S_vector,Q_vector))
errors = f(X_guess)
print(0.5*np.sum(np.square(errors)))

# find solution permutation
S_temp = np.zeros((N,3))
Q_temp = np.zeros((N,T))
used_indices = []
for n in range(N):
    best_score = 0
    for n_guess in range(N):
        already_used = False
        for n_used in used_indices:
            if n_guess == n_used:
                already_used = True
                break
        if not already_used:
            score = np.power(np.sum(np.square(S_target[n,:]-S_guess[n_guess,:])), -1)
            if score > best_score:
                best_score = score
                best_index = n_guess

    S_temp[n,:] = S_guess[best_index,:]
    Q_temp[n,:] = Q_guess[best_index,:]

S_guess = S_temp
Q_guess = Q_temp

# check that f(x) == 0
S_guess_vector = S_guess.reshape((N*3,))
Q_guess_vector = Q_guess.reshape((N*T,))
X_guess = np.concatenate((S_vector,Q_vector))
errors = f(X_guess)
print(0.5*np.sum(np.square(errors)))

#print solution

#print("number of iterations = ", max_nfev)
S_target_array = []
for n in range(N):

```

```

for c in range(3):
    S_target_array.append(S_target[n,c])

S_guess_array = []
for n in range(N):
    for c in range(3):
        S_guess_array.append(S_guess[n,c])

Q_target_array = []
for n in range(N):
    for t in range(T):
        Q_target_array.append(Q_target[n,t])

Q_guess_array = []
for n in range(N):
    for t in range(T):
        Q_guess_array.append(Q_guess[n,t])

plt.plot(Q_target_array, label = "Source Power Target")
plt.plot(Q_guess_array, label = "Source Power Prediction")
plt.xlabel("Time")
plt.ylabel("Power")
plt.title("Source Power Error all Transmitters")
plt.legend()
plt.show()
plt.savefig("Source Power Error all Transmitters.png")
plt.close()

plt.plot(S_target_array, label = "Source Locations Target")
plt.plot(S_guess_array, label = "Source Locations Prediction")
plt.xlabel("All Sources and Spatial Dimensions")
plt.ylabel("Spatial Position")
plt.title("Source Locations Error all Transmitters")
plt.legend()
plt.show()
plt.savefig("Source Locations Error all Transmitters.png")
plt.close()

pca = PCA(n_components=2)
pca.fit(S_target)
S_guess_2D = pca.transform(S_guess)
S_target_2D = pca.transform(S_target)

```

```
for n in range(N):
    plt.scatter(x=[S_target_2D[n,0],S_guess_2D[n,0]],y=[S_target_2D[n,1],S_guess_2D[n,1]],
label="Source "+str(n))
    plt.xlabel("Spatial Dimension 1")
    plt.ylabel("Spatial Dimension 2")
    plt.title("Source Locations Error Projection in 2D Space")
    plt.legend()
    plt.show()
    plt.savefig("Source Locations Error Projection in 2D Space.png")
    plt.close()

for n in range(N):
    plt.plot(Q_target[n,:], label = "Source Power Target")
    plt.plot(Q_guess[n,:], label = "Source Power Prediction")
    plt.xlabel("Time")
    plt.ylabel("Power")
    plt.title("Source "+str(n+1)+" Power Error")
    plt.legend()
    plt.show()
    plt.savefig("Source "+str(n+1)+" Power Error.png")
    plt.close()
```